首页 分享 光照和温度调控种子萌发的分子机理研究进展

光照和温度调控种子萌发的分子机理研究进展

来源:花匠小妙招 时间:2024-09-18 23:39

参考文献

[1] Bewley J D, Black M. Seeds: physiology of development and germination[M]. New York: Plenum Press, 1994
[2] Bewley J D. Seed germination and dormancy[J]. The Plant Cell, 1997, 9(7): 1055-1066
[3] Bentsink L, Koornneef M. Seed dormancy and germination[M]. Washington: BioOne, 2008: 1-18
[4] Whitelam G C, Halliday K J. Annual Plant Reviews Volume 30: Light and Plant Development [DB/OL]. (2007-11-12).[2013-03-05]. http://onlinelibrary.wiley.com/book/10.1002/9780470 988893
[5] Franklin K A. Light and temperature signal crosstalk in plant development[J]. Current Opinion in Plant Biology, 2009, 12(1): 63-68
[6] Jiao Y, Lau O S, Deng X W. Light-regulated transcriptional networks in higher plants[J]. Nat Rev Genet, 2007, 8(3): 217-230
[7] Flint L H. The action of radiation of specific wave-lengths in relation to the germination of light sensitive lettuce seed[J]. Proc Int Seed Test Assoc, 1936, 8: 1-4
[8] Borthwick H A, Hendricks S, Parker M, Toole E, Toole V K. A reversible photoreaction controlling seed germination[J]. Proceedings of the National Academy of Sciences of the United States of America, 1952, 38(8): 662-666
[9] Borthwick H, Hendricks S. Photoperiodism in plants[J]. Science, 1960, 132(3435): 1223-1228
[10] Chen M, Chory J, Fankhauser C. Light Signal Transduction in Higher Plants[J]. Annual Review of Genetics, 2004, 38(1): 87-117
[11] Clack T, Mathews S, Sharrock R. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE[J]. Plant Molecular Biology, 1994, 25(3): 413-427
[12] Mathews S, Sharrock R A. Phytochrome gene diversity[J]. Plant, Cell & Environment, 1997, 20(6): 666-671
[13] Furuya M. Phytochromes: their molecular species, gene families, and functions[J]. Annual Review of Plant Biology, 1993, 44(1): 617-645
[14] Quail P H. An emerging molecular map of the phytochromes[J]. Plant, Cell and Environment, 1997, 20(6): 657-665
[15] Sharrock R A, Clack T. Patterns of expression and normalized levels of the five arabidopsis phytochromes[J]. Plant physiology, 2002, 130(1): 442-456
[16] Shinomura T, Nagatani A, Chory J, Furuya M. The induction of seed germination in arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A[J]. Plant physiology, 1994, 104(2): 363-371
[17] Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 1996, 93(15): 8129-8133
[18] Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination[J]. Current Opinion in Plant Biology, 2002, 5(1): 33-36
[19] Poppe C, Schafer E. Seed Germination of Arabidopsis thaliana phyA/phyB double mutants is under phytochrome control[J]. Plant physiology, 1997, 114(4): 1487-1492
[20] Ritchie S, Gilroy S. Gibberellins: regulating genes and germination[J]. New Phytologist, 1998, 140(3): 363-383
[21] Heschel M S, Butler C M, Chiang G C K, Wheeler A, Sharrock R A, Whitelam G C, Donohue K. New roles of phytochromes during seed germination[J]. International journal of plant sciences, 2008, 169(4): 531-540
[22] Hennig L, Poppe C, Sweere U, Martin A, Schäfer E. Negative interference of endogenous phytochrome B with phytochrome A function in arabidopsis[J]. Plant physiology, 2001, 125(2): 1036-1044
[23] Schwechheimer C, Willige B C. Shedding light on gibberellic acid signalling[J]. Current opinion in plant biology, 2009, 12(1): 57-62
[24] Lau O S, Deng X W. Plant hormone signaling lightens up: integrators of light and hormones[J]. Current opinion in plant biology, 2010, 13(5): 571-577
[25] Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination[J]. Journal of experimental botany, 2011, 62(10): 3289-3309
[26] 廖泳祥, 黄静, 高梅, 李东, 薛晶晶, 张红宇, 徐培洲, 吴先军. 水稻制种中杂交种子穗发芽生理特性研究[J]. 核农学报, 2009, 23(5): 864-867
[27] Yamaguchi S, Smith M W, Brown R G S, Kamiya Y, Sun T P. Phytochrome regulation and differential expression of gibberellin 3β-Hydroxylase genes in germinating Arabidopsis seeds[J]. The Plant Cell, 1998, 10(12): 2115-2126
[28] Yamaguchi S, Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous and environmental signals[J]. Plant and Cell Physiology, 2000, 41(3): 251-257
[29] Yang Y Y, Nagatani A, Zhao Y J, Kang B J, Kendrick R E, Kamiya Y. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana[J]. Plant and Cell Physiology, 1995, 36(7): 1205-1211
[30] Arana M, Miguel L, Sánchez R. A phytochrome-dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds[J]. Planta, 2006, 223(4): 847-857
[31] Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun T, Koshiba T. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism[J]. The Plant Journal, 2006, 48(3): 354-366
[32] Andel F, Hasson K C, Gai F, Anfinrud P A, Mathies R A. Femtosecond time-resolved spectroscopy of the primary photochemistry of phytochrome[J]. Biospectroscopy, 1997, 3(6): 421-433
[33] Chen M, Tao Y, Lim J, Shaw A, Chory J. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals[J]. Current Biology, 2005, 15(7): 637-642
[34] Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein[J]. Cell, 1998, 95(5): 657-667
[35] Zhu Y, Tepperman J M, Fairchild C D, Quail P H. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3[J]. Proceedings of the National Academy of Sciences, 2000, 97(24): 13419-13424
[36] Toledo-Ortiz G, Huq E, Quail P H. The arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 15(8): 1749-1770
[37] Duek P D, Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling[J]. Trends in Plant Science, 2005, 10(2): 51-54
[38] Leivar P, Quail P H. PIFs: pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1): 19-28
[39] Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail P H. phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis[J]. Science, 2004, 305(5692): 1937-1941
[40] Huq E, Quail P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. The Earopean Molecular Biology Organization Journal, 2002, 21(10): 2441-2450
[41] Martiacutenez-Garca J F, Huq E, Quail P H. direct targeting of light signals to a promoter element-bound transcription factor[J]. Science, 2000, 288(5467): 859-863
[42] Khanna R, Huq E, Kikis E A, Al-Sady B, Lanzatella C, Quail P H. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors[J]. The Plant Cell, 2004, 16(11): 3033-3044
[43] Ni M, Tepperman J M, Quail P H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light[J]. Nature, 1999, 400: 781-784
[44] Shimizu-Sato S, Huq E, Tepperman J M, Quail P H. A light-switchable gene promoter system[J]. Nature biotechnology, 2002, 20(10): 1041-1044
[45] Al-Sady B, Ni W, Kircher S, Schäfer E, Quail P H. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation[J]. Molecular cell, 2006, 23(3): 439-446
[46] Castillon A, Shen H, Huq E. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks[J]. Trends in Plant Science, 2007, 12(11): 514-521
[47] Oh E, Kim J, Park E, Kim J I, Kang C, Choi G. PIL5, a Phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. The Plant Cell, 2004, 16(11): 3045-3058
[48] Seo M, Nambara E, Choi G, Yamaguchi S. Interaction of light and hormone signals in germinating seeds[J]. Plant Molecular Biology, 2009, 69(4): 463-472
[49] Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H S, Sun T, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds[J]. The Plant Cell, 2007, 19(4): 1192-1208
[50] Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W I, Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. The Plant Journal, 2006, 47(1): 124-139
[51] Footitt S, Huang Z, Clay H A, Mead A, Finch-Savage W E. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. The Plant Journal, 2013, 74(6): 1003-1015
[52] Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. Genome-wide analysis of genes targeted by phytochrome interacting factor 3-LIKE5 during seed germination in Arabidopsis[J]. The Plant Cell, 2009, 21(2): 403-419
[53] Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1[J]. The Plant Journal, 2010, 61(2): 312-323
[54] Kim D H, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. SOMNUS, a CCCH-type zinc finger protein in arabidopsis, negatively regulates light-dependent seed germination downstream of pil5[J]. The Plant Cell, 2008, 20(5): 1260-1277
[55] Park J, Lee N, Kim W, Lim S, Choi G. ABI3 and PIL5 collaboratively activate the expression of somnus by directly binding to its promoter in imbibed arabidopsis seeds[J]. The Plant Cell, 2011, 23(4): 1404-1415
[56] Henderson I R, Dean C. Control of arabidopsis flowering: the chill before the bloom[J]. Development, 2004, 131(16): 3829-3838
[57] Gray W M, stin A, Sandberg G, Romano C P, Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 7197-7202
[58] Mazzella M A, Bertero D, Casal J J. Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1[J]. Planta, 2000, 210(3): 497-501
[59] Penfield S. Temperature perception and signal transduction in plants[J]. New Phytologist, 2008, 179(3): 615-628
[60] Chao W, Foley M, Do[KG-*2]g[DD(-1*2][HT]ˇ[DD)][KG-*3]ramac M, Anderson J, Horvath D. Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5[J]. Functional & Integrative Genomics, 2011, 11(4): 637-649
[61] Bewley J D, Black M. Physiology and biochemistry of seeds in relation to germination[M]Berlin: Springer-Verlag, 1982
[62] Cone J, Spruit C. Imbibition conditions and seed dormancy of Arabidopsis thaliana[J]. Physiologia Plantarum, 2006, 59(3): 416-420
[63] Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds[J]. The Plant Cell, 2004, 16(2): 367-378
[64] Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism[J]. The EMBO journal, 2004, 23(7): 1647-1656
[65] Penfield S, Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in arabidopsis[J]. The Plant Cell, 2009, 21(6): 1722-1732
[66] Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Ross A R S, Kermode A R. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination[J]. The Plant Journal, 2005, 42(1): 35-48
[67] Gonai T, Kawahara S, Tougou M, Satoh S, Hashiba T, Hirai N, Kawaide H, Kamiya Y, Yoshioka T. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin[J]. Journal of experimental botany, 2004, 55(394): 111-118
[68] Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N. Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana[J]. Plant and Cell Physiology, 2006, 47(8): 1081-1094
[69] Huo H, Dahal P, Kunusoth K, McCallum C M, Bradford K J. Expression of 9-cis-E poxycarotenoid dioxygenase4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance[J]. The Plant Cell, 2013, 25(3): 884-900
[70] Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in arabidopsis seeds[J]. Plant physiology, 2008, 146(3): 1368-1385
[71] Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y. Thermoinhibition uncovers a role for strigolactones in arabidopsis seed germination[J]. Plant and Cell Physiology, 2012, 53(1): 107-117
[72] Chiang G C K, Barua D, Kramer E M, Amasino R M, Donohue K. Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2009, 106(28): 11661-11666
[73] Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J. Environmental and genetic influences on the germination of arabidopsis thallana in the field[J]. Evolution, 2005, 59(4): 740-757
[74] Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe W J J. The time required for dormancy release in arabidopsis is determined by delay of germination1 protein levels in freshly harvested seeds[J]. The Plant Cell, 2012, 24(7): 2826-2838
[75] Kendall S L, Hellwege A, Marriot P, Whalley C, Graham I A, Penfield S. Induction of dormancy in arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and cbf transcription factors[J]. The Plant Cell, 2011, 23(7): 2568-2580
[76] Chiang G C K, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe W J J, Donohue K, De Meaux J. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana[J]. Molecular Ecology, 2011, 20(16): 3336-3349
[77] Bentsink L, Jowett J, Hanhart C J, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2006, 103(45): 17042-17047
[78] Sidaway-Lee K, Josse E M, Brown A, Gan Y, Halliday K J, Graham I A, Penfield S. Spatula links daytime temperature and plant growth rate[J]. Current biology, 2010, 20(16): 1493-1497
[79] Josse E M, Gan Y, Bou-Torrent J, Stewart K L, Gilday A D, Jeffree C E, Vaistij F E, Martínez-García J F, Nagy F, Graham I A, Halliday K J. A Della in disguise: spatula restrains the growth of the developing arabidopsis seedling[J]. The Plant Cell, 2011, 23(4): 1337-1351
[80] Penfield S, Josse E M, Kannangara R, Gilday A D, Halliday K J, Graham I A. Cold and light control seed germination through the bhlh transcription factor SPATULA[J]. Current biology, 2005, 15(22): 1998-2006
[81] Vaistij F E, Gan Y, Penfield S, Gilday A D, Dave A, He Z, Josse E M, Choi G, Halliday K J, Graham I A. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA[J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10866-10871
[82] Heisler M G, Atkinson A, Bylstra Y H, Walsh R, Smyth D R. Spatula, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development, 2001, 128(7): 1089-1098
[83] Alvarez J, Smyth D R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with agamous[J]. Development, 1999, 126(11): 2377-2386
[84] Makkena S, Lamb R S. The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana[J]. Plant Signaling and Behavior, 2013, 8(5): e24140
[85] Makkena S, Lamb R S. The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem[J]. BMC Plant Biol, 2013, 13(1):1
[86] Roth-Bejerano N, Koller D, Negbi M. Mediation of phytochrome in the inductive action of low temperature on dark germination of lettuce seed at supra-optimal temperature[J]. Plant physiology, 1966, 41(6): 962-964
[87] Scheibe J, Lang A. Lettuce seed germination: evidence for a reversible light-induced increase in growth potential and for phytochrome mediation of the low temperature effect[J]. Plant physiology, 1965, 40(3): 485
[88] de Lucas M, Daviere J M, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz J M, Lorrain S, Fankhauser C, Blazquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451: 480-484
[89] Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz J M, Kircher S, Schafer E, Fu X, Fan L-M, Deng X W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451: 475-479
[90] Vidal A, Ben-Cheikh W, Talón M, García-Martínez J. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid[J]. Planta, 2003, 217(3): 442-448
[91] Heschel MS, Selby J, Butler C, Whitelam G C, Sharrock R A, Donohue K. A new role for phytochromes in temperature-dependent germination[J]. New Phytologist, 2007, 174(4): 735-741

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

教育部博士点基金项目 (20120101110079),浙江省钱江人才计划项目(2010R10084),浙江省人事厅留学人员科技活动项目择优项目(20100129)。

{{custom_fund}}

相关知识

植物2n配子发生机理研究进展
光照调节菊花花青素合成的分子机理
光和温度调控开花时间的研究进展
高等植物成花分子机理的研究进展
水稻花发育的分子生物学研究进展
观赏植物花期调控途径及其分子机制(31页)
不同温度及赤霉素处理对少花龙葵种子萌发与出苗的影响
光周期途径调控多年生草本植物成花诱导分子机理的研究
蓝色花形成分子机理研究进展
拟南芥光信号蛋白FHY3介导叶片衰老的分子机理研究

网址: 光照和温度调控种子萌发的分子机理研究进展 https://www.huajiangbk.com/newsview178759.html

所属分类:花卉
上一篇: 植物光敏色素B如何在不同光照条件
下一篇: 水稻花时调控机理与育种应用

推荐分享