首页 分享 古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家—“代数学之父阿尔花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”以x^2+10x=39为

古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家—“代数学之父阿尔花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”以x^2+10x=39为

来源:花匠小妙招 时间:2025-02-17 23:42

◎ 一元二次方程根的判别式的定义

根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

◎ 一元二次方程根的判别式的知识扩展

1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
2、根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
3、根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

◎ 一元二次方程根的判别式的特性

根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

◎ 一元二次方程根的判别式的教学目标

1、能用b2-4ac的值判断一元二次方程根的情况。
2、用公式法解一元二次方程的过程中,进一步理解代数式b2-4ac对根的情况的判断作用。
3、在理解根的判别式的推导过程中,体会严密的思维过程。

◎ 一元二次方程根的判别式的考试要求

能力要求:掌握
课时要求:80
考试频率:常考
分值比重:4

相关知识

古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家—“代数学之父阿尔花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”以x^2+10x=39为
历史上的花剌子模
花剌子模沙漠中的古遗址
花剌子模沙漠中的古遗址.pdf
数学的历史创举有哪些
斐波那契是中世纪最伟大的西方数学家
花剌子模王朝,其他图文简介
在花剌子模土地上建立的希瓦汗国
花剌子模人是哪个民族?
阿富汗历史:古尔王朝被花剌子模征服

网址: 古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家—“代数学之父阿尔花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”以x^2+10x=39为 https://www.huajiangbk.com/newsview1676143.html

所属分类:花卉
上一篇: 何以中国:涨知识!华夏的“华”字
下一篇: 初中地理复习资料天气

推荐分享