多花黑麦草抗旱代谢通路挖掘
图 1 多花黑麦草代谢组变化趋势
Figure 1. The metabolomic profile L. multiflorum under drought stress
图 2 GC-MS技术平台的稳定性评估
Figure 2. The scatter plot of the minimal correlation coefficient
图 3 多花黑麦草干旱胁迫代谢组主成分分析
Figure 3. Principal component analysis (PCA)
图 4 多花黑麦草干旱胁迫下靶标代谢物的筛选
Figure 4. Metabolomic biomarkers
图 5 干旱胁迫下多花黑麦草的显著代谢通路分析
1.抗坏血酸和醛糖酸代谢(1, 3.035 1);2.甘氨酸丝氨酸苏氨酸代谢(0.611 2, 5.071 8);3.丙氨酸天冬氨酸谷氨酸代谢(0.342 5, 6.852 9);4.三羧酸循环(0.295 1, 5.220 8);5.半乳糖代谢(0.166 8, 7.447 7);6.氨酰tRNA生物合成(0.093 0, 9.294 9);7.精氨酸脯氨酸代谢(0.085 4, 3.870 3);8.赖氨酸生物合成(0, 4.282 8);9.氰基氨基酸代谢(0, 3.695 5)。
Figure 5. Enriched pathways determined by MetaboAnalyst 4.0
1. Ascorbate and aldarate metabolism (1, 3.035 1); 2. Glycine, serine and threonine metabolism (0.611 2, 5.071 8); 3. Alanine, aspartate and glutamate metabolism (0.342 5, 6.852 9); 4. Citrate cycle (TCA cycle) (0.295 1, 5.220 8); 5. Galactose metabolism (0.166 8, 7.447 7); 6. Aminoacyl-tRNA biosynthesis (0.093 0, 9.294 9); 7. Arginine and proline metabolism (0.085 4, 3.870 3); 8. Lysine biosynthesis(0, 4.282 8); 9. Cyanoamino acid metabolism (0, 3.695 5).
表 1 80个差异代谢产物变化趋势分布
Table 1 Distribution of 80 significant metabolites
代谢物分类Metabolites浓度显著升高的代谢物(44种)
44 increased metabolites浓度显著降低的代谢物(36种)
36 decreased metabolites 植物生长调节剂
Plant growth regulators 抗坏血酸 Ascorbic acid、氢吲哚1H-Indole、磷酸 Phosphate γ-氨基丁酸γ-Aminobutyric acid、吲哚乙酸 Indol-3-acetic acid、1-氢吲哚-2,3-二酮1H-Indole-2,3-dione、衣康酸 Itaconic acid、牛磺酸 Taurine 碳水化合物
Carbohydrates 阿洛糖 Allose、琥珀酸 Succinic acid、半乳糖 Galactose、苹果酸 Malic acid、纤维二糖 Cellobiose、塔罗糖 Talose、龙胆二糖 Gentiobiose、果糖 Fructose海藻糖 Trehalose、乳果糖 Lactulose顺乌头酸 cis-Aconitic acid、葡萄糖酸 Gluconic acid、丙酸 Propanoic acid、富马酸 Fumaric acid、乳糖 Lactose、α-酮戊二酸2-ketoglutaric acid、丁烯酸 Butanoic acid、甘露糖 Mannose、丙二酸 Malonic acid、柠檬酸 Citric acid、葡萄糖醛酸 Glucuronic acid 2-丁烯酸2-Butenoic acid、β-龙胆二糖β-Gentiobiose、蔗糖 Sucrose、葡萄糖 Glucose、麦芽糖 Maltose、山梨糖 Sorbose、琥珀酰丙酮 Succinylacetone 氨基酸
Amino acids 高丝氨酸 Homoserine、甘氨酸 Glycine、苏氨酸 Threonine、色氨酸 Tryptophan、脯氨酸 Proline、苯丙氨酸 Phenylalanine、β-丙氨酸β-Alanine、尿素 Urea、β-氨基异丁酸β-Amino isobutyric acid、肌氨酸酐 Creatinine 亮氨酸 Leucine、丝氨酸 Serine、2-氨基丁酸2-Aminobutyric acid、赖氨酸 Lysine、天冬氨酸 Aspartic acid、异亮氨酸 Isoleucine、酪氨酸 Tyrosine、腐氨 Putrescine、甲硫氨酸 Methionine、天冬酰胺酸 Asparagine 脂质类
Lipids 2-羟基十一烷酸2-Hydroxyundecanoic acid、豆甾醇 Stigmasterol、甘油酸 Glyceric acid 9-十八碳烯酸9-Octadecenoic acid、β-谷甾醇β-Sitosterol、亚油酸 Linoleic acid 9,12,15 -亚麻酸9,12,15-Octadecatrienoic acid、9,12-十八二烯酸9,12-Octadecadienoic acid、棕榈酸 Palmitic acid、硬脂酸 Stearic acid 核苷酸
Nucleotides 胸腺嘧啶 Thymine、腺嘌呤 Adenine、嘧啶 Pyrimidine 腺苷 Adenosine、肌醇 Myo-Inositol 其他
Others 山梨醇 Sorbitol、苯唑酸 Benzoic acid、N-苯基-2-脱氧-D-葡萄糖胺 Erythro-Pentitol、半乳糖醇 Dulcitol 二羟甾醇 Estriol、1-氨基环丙烷基-1-羧酸1-Aminocyclopropane-1-carboxylic acid (ACC)、2-哌啶酮2-Piperidone、维生素 E Tocophero、肌醇半乳糖苷 Galactinol [1] 李文龙, 蔡栋, 苏文亮, 魏巍, 朱高峰, 赵志刚, 许静. 基于SPEI指数与GIS技术的高寒草地干旱生态风险动态评价. 草业科学, 2019, 36(6): 1531-1543.
LI W L, CAI D, SU W L, WEI W, ZHU G F, ZHAO Z G, XU J. Dynamic assessment of ecological risk owing to drought in alpine meadows based on SPEI index and GIS technology. Pratacultural Science, 2019, 36(6): 1531-1543.
[2] 曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135. doi: 10.3321/j.issn:1004-5759.2008.02.018QU T, NAN Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135. doi: 10.3321/j.issn:1004-5759.2008.02.018
[3] 王建兵, 张德罡, 田青. 甘肃中西部干旱半干旱地区牧民对草原政策认知分析. 草地学报, 2013, 21(1): 11-17. doi: 10.11733/j.issn.1007-0435.2013.01.002WANG J B, ZHANG D G, TIAN Q. Evaluating herders' knowledge of grassland policy in arid and semi-arid pastoral areas in central and western Gansu. Acta Agrestia Sinica, 2013, 21(1): 11-17. doi: 10.11733/j.issn.1007-0435.2013.01.002
[4] 孙旭春, 顾洪如, 张霞, 董臣飞, 许能祥. 3种生长抑制剂对多花黑麦草种子产量的影响. 草业科学, 2018, 35(8): 1959-1964. doi: 10.11829/j.issn.1001-0629.2017-0542SUN X C, GU H R, ZHANG X, DONG C F, XU N X. Effects of the application of three growth regulators on seed yield of <italic>Lolium multiflorum</italic>. Pratacultural Science, 2018, 35(8): 1959-1964. doi: 10.11829/j.issn.1001-0629.2017-0542
[5]FUJITA Y, FUJITA M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 2011, 124(4): 509-525. doi: 10.1007/s10265-011-0412-3
[6]MIYAKAWA T, FUJITA Y, YAMAGUCHI-SHINOZAKI K, TANOKURAL M. Structure and function of abscisic acid receptors. Trends in Plant Science, 2013, 18(5): 259-266. doi: 10.1016/j.tplants.2012.11.002
[7]BABAK B, STATOSHI I, MIKI F, YASUNARI F, HIRONORI T, YURIKO O, KAZUKO Y S, KAZUO S. Characterization of the promoter region of an <italic>Arabidopsis</italic> gene for 9-cisepoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Research, 2013, 20(4): 315-324. doi: 10.1093/dnares/dst012
[8]KIM J S, MIZOI J, KIDOKORO S, MARUYAMA K, NAKAJIMA J, NAKASHIMA K, MITSUDA N, MATSUI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. <italic>Arabidopsis</italic> growth-regulating factor 7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell, 2012, 24(8): 3393-3405. doi: 10.1105/tpc.112.100933
[9]MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(2): 86-96. doi: 10.1016/j.bbagrm.2011.08.004
[10]GANGULY D R, CRISP P A, EICHTEN S R, POGSON B J. The <italic>Arabidopsis</italic> DNA methylome is stable under transgenerational drought stress. Plant Physiology, 2017, 175(4): 1893-1912. doi: 10.1104/pp.17.00744
[11]YU X Q, BAI G H, LIU S W, LUO N, WANG Y, RICHMOND D S, PIJUT P M, JACKSON S A, YU J M, JIANG Y W. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. Journal of Experimental Botany, 2013, 64(6): 1537-1551. doi: 10.1093/jxb/ert018
[12]HATIER J B, FAVILLE M J, HICKEY M J, KOOLAARD J P, SCHMIDT J, CAREY B L, JONES C S. Plant vigour at establishment and following defoliation are both associated with responses to drought in perennial ryegrass (<italic>Lolium perenne</italic> L.). Journal of Experimental Botany, 2014, 65(20): 5823-5834. doi: 10.1093/jxb/eru318
[13]CHAPMAN M A. Transcriptome sequencing and marker development for four underutilized legumes. Applications in Plant Sciences, 2015, 3(2): 1400111. doi: 10.3732/apps.1400111
[14]FOITO A, BYRNE S L, SHEPHERD T, STEWART D, BARTH S. Transcriptional and metabolic profiles of <italic>Lolium perenne</italic> L. genotypes in response to a PEG-induced water stress. Plant Biotechnology Journal, 2009, 7(8): 719-732. doi: 10.1111/j.1467-7652.2009.00437.x
[15]AMIARD V, MORVAN-BERTRAND A, BILLARD J P, HUAULT C, KELLER F, PRUDHOMME M P. Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass. Plant Physiology, 2003, 132(4): 2218-2229. doi: 10.1104/pp.103.022335
[16]PAN L, MENG C, WANG J P, MA X, FAN X M, YANG Z F, ZHOU M L, ZHANG X Q. Integrated omics data of two annual ryegrass (<italic>Lolium multiflorum</italic> L.) genotypes reveals core metabolic processes under drought stress. BMC Plant Biology, 2018, 18(1): 26-43. doi: 10.1186/s12870-018-1239-z
[17]STEUER R. Review: On the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 2006, 7(2): 151-158. doi: 10.1093/bib/bbl009
[18]CAMACHO D, DE LA FUENTE A, MENDES P. The origin of correlations in metabolomics data. Metabolomics, 2005, 1(1): 53-63. doi: 10.1007/s11306-005-1107-3
[19] 刘建新, 王瑞娟, 王鑫, 李东波. La(NO<sub>3</sub>)<sub>3</sub>对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响. 中国生态农业学报, 2011, 19(2): 353-357. doi: 10.3724/SP.J.1011.2011.00353LIU J X, WANG R J, WANG X, LI D B. Effect of La(NO<sub>3</sub>)<sub>3</sub> on seedling growth and physiological characteristics of ryegrass under NaCl stress. Chinese JoumaI of Eco-AgrIcuIture, 2011, 19(2): 353-357. doi: 10.3724/SP.J.1011.2011.00353
[20] 辛金霞. 一年生黑麦草、高羊茅及杂交羊茅黑麦草抗旱性研究. 兰州: 甘肃农业大学硕士学位论文, 2010.XIN J X. The research of drought resistance to annual ryegrass, tall fescue and hybrid festuloium. Master Thesis. Lanzhou: Gansu Agricultural University, 2010.
[21]SREEKUMAR A, POISSON L, RAJENDIRAN T, CHINNAIYAN A. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457: 910-914. doi: 10.1038/nature07762
[22]FAROOQ M, WAHID A, KOBAYASHI N, FUJITA D, BASRA S M A. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29(1): 185-212. doi: 10.1051/agro:2008021
[23] 何亚飞, 李霞, 谢寅峰. 植物中糖信号及其对逆境调控的研究进展. 植物生理学, 2016, 52(3): 241-249.HE Y F, LI X, XIE Y F. Research progress in sugar signal and its regulation of stress in plants. Plant Physiology Communications, 2016, 52(3): 241-249.
[24] 项萍, 唐喆. 气相色谱−质谱联用法测定植物组织中糖与糖醇. 质谱学报, 2018, 39(3): 360-365. doi: 10.7538/zpxb.2017.0075XIANG P, TANG Z. Determination of sugars and sugar alcohols in plant tissues by GC/MS. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 360-365. doi: 10.7538/zpxb.2017.0075
[25]CHANG L, WANG L, PENG C, TONG Z, WANG D, DING G, XIAO J, GUO A, WANG X. The chloroplast proteome response to drought stress in cassava leaves. Plant Physiology and Biochemistry, 2019, 142: 351-362. doi: 10.1016/j.plaphy.2019.07.025
[26]ZADRAZNIK T, MOEN A, SUSTAR-VOZLIC J. Chloroplast proteins involved in drought stress response in selected cultivars of common bean (<italic>Phaseolus vulgari</italic>s L.). 3 Biotech, 2019, 9: 331. doi: 10.1007/s13205-019-1862-x
[27]RUAN Y L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014, 65(1): 33-67. doi: 10.1146/annurev-arplant-050213-040251
[28]TAUZIN A S, GIARDINA T. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in Plant Science, 2014, 5(5): 1-8.
[29]XUE G P, MCINTYRE C L, GLASSOP D, SHORTER R. Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 2008, 67(3): 197-214. doi: 10.1007/s11103-008-9311-y
[30]LIU J, HASNUZZAMAN M, WEN H, ZHANG J, PENG T, SUN H, ZHAO Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, 2019, 256(5): 1217-1227. doi: 10.1007/s00709-019-01354-6
[31]YOU J, CHAN Z. ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 2015, 6: 1092.
[32]ZHOU R, YU X, OTTOSEN C O, ROSENQVIST E, ZHAO L, WANG Y, YU W, ZHAO T, WU Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 2017, 17(1): 24. doi: 10.1186/s12870-017-0974-x
[33]HILDEBRANDT T M. Synthesis versus degradation: Directions of amino acid metabolism during <italic>Arabidopsis</italic> abiotic stress response. Plant Molecular Biology, 2018, 98: 121-135. doi: 10.1007/s11103-018-0767-0
[34]ALEKSZA D, HORVATH G V, SANDOR G, SZABADOS L. Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiology, 2017, 175: 555-567. doi: 10.1104/pp.17.00791
[35]SZABADOS L, SAVOURE A. Proline: A multifunctional amino acid. Trends in Plant Science, 2010, 15: 89-97.
[36]VERSLUES P E, SHARMA S. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, 2010, 8: e0140. doi: 10.1199/tab.0140
[37]ZANDALINAS S I, MITTLER R, BALFAGON D, ARBONA V, GOMEZ-ASDENAS A. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2018, 162: 2-12. doi: 10.1111/ppl.12540
[38]BOUGOUFFA S, RADOVANOVIC A, ESSACK M, B AJIC V B. DEOP: A database on osmoprotectants and associated pathways. Database, 2014(1): 1-13.
[39]BATISTA-SILVA W, HEINEMANN B, RUGEN N, NUNES-NESI A, ARAUJO W L, BRAUN H P, HILDEBRANDT T M. The role of amino acid metabolism during abiotic stress release. Plant, Cell and Environment, 2019, 42: 1630-1644. doi: 10.1111/pce.13518
[40] 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律. 植物生态学报, 2016, 40(12): 1319-1327. doi: 10.17521/cjpe.2016.0107GUO R, ZHOU J, YANG F, LI F, LI H R, XIA X, LIU Q. Growth metabolism of wheat under drought stress at the jointing-booting stage. Chinese Journal of Plant Ecology, 2016, 40(12): 1319-1327. doi: 10.17521/cjpe.2016.0107
[41]ASHRAFIA M, AZIMI-MOQADAMA M R, MORADIB P, MOHSENI-FARDA E, SHEKARIA F, KOMPANY-ZAREHC M. Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry, 2018, 132: 391-399. doi: 10.1016/j.plaphy.2018.09.009
[42]MCKEON T A, HOFFMAN N E, YANG S F. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-l-carboxylic acid in water-stressed wheat leaves. Planta, 1982, 155: 437-443. doi: 10.1007/BF00394473
[43]SARKER U, OBA S. Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in <italic>Amaranthus tricolor</italic>. Applied Biochemistry and Biotechnology, 2018, 186(4): 999-1016. doi: 10.1007/s12010-018-2784-5
[44]AZIZ A, AKRAM N A, ASHRAF M. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (<italic>Chenopodium quinoa</italic> Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 2018, 123: 192-203. doi: 10.1016/j.plaphy.2017.12.004
[45]XU L, ISLAM F, ALI B, PEI Z, LI J, GHANI MA, ZHOU W. Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (<italic>Triticum aestivum</italic> L.). 3 Biotech, 2017, 7: 273. doi: 10.1007/s13205-017-0904-5
[46]MONTEIRO F, PHAM T, ZUILY Y, FERRARI R, VIEIRA J, MAZLIAK P. Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of <italic>Vigna unguiculata</italic>. Plant Physiology and Biochemistry, 1993, 31(5): 707-715.
[47]MATOS AR, ARCY-LAMETA A, FRANCA M. A novel patatin-like gene stimulated by drought stress encodes a galatolipid acyl hydrolase. FEBS Letters, 2001, 491(3): 188-192. doi: 10.1016/S0014-5793(01)02194-9
相关知识
多组学联合分析揭示多花黑麦草抗旱响应机制研究
23份多花黑麦草萌发期抗旱性评价
转录组和代谢组联合分析椭圆叶花锚响应海拔的关键代谢通路
‘红元宝’紫玉兰两次花芽分化差异代谢通路及关键调控基因筛选
昼夜节律在主要植物代谢和信号通路中的作用。,Frontiers in Plant Science
武汉植物园在多花黑麦草耐盐机理研究中取得进展
月季等蔷薇科园林植物色香关联候选基因的挖掘
西兰花种子和幼苗转录组研究及芥子油苷代谢通路构建
向日葵油酸含量QTL定位与关键候选基因的挖掘
转录组+代谢组专题
网址: 多花黑麦草抗旱代谢通路挖掘 https://www.huajiangbk.com/newsview1664045.html
上一篇: 内蒙古蒙草抗旱股份有限公司的公司 |
下一篇: 蒙草抗旱中标1亿元绿化工程施工项 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039