基于CNN和SVM分类优化的大蒜鳞芽朝向识别研究
摘要: 针对大蒜鳞芽朝上、直立栽种的特殊种植需求,研究实用性好、准确率高、抗干扰强的鳞芽朝向自动识别算法,具有重要的工程应用意义。提出基于卷积神经网络(CNN)和支持向量机(SVM)分类优化的改进算法(CNN-SVM),实现大蒜鳞芽朝向的自动识别与修正;提出SVM分类优化方案与随机参数择优、损失函数检测方法,以解决感受野小、分类效果差、过拟合等问题。研究结果表明:CNN-SVM算法的识别准确率为99.8%,单张图片识别时间为0.024 s。与经典CNN、SVM算法相比,本文所提算法对于感受野小、干扰强的识别效果更好;同时具有识别准确率高、计算规模小、对局部特征敏感等优点。不仅为大蒜自动智能播种设备的研发提供算法储备,而且可以推广应用于其他小物体识别。
关键词: 大蒜鳞芽, 朝向识别, 卷积神经网络, 支持向量机, 分类优化, 深度学习
Abstract: Aiming at the special planting requirements of garlic scale buds facing up and upright sowing, an automatic recognition algorithm of scale bud orientation with good practicability, high accuracy, and strong antiinterference was developed. This paper proposed an improved algorithm (CNN-SVM) based on convolutional neural network (CNN) and support vector machine (SVM) classification optimization to realize automatic identification and correction of garlic scale bud orientation. Additionally, SVM classification optimization scheme and random parameter selection was investigated, as well as a loss function detection method to solve the problems of small perception, poor classification effect, and overfitting. The research results showed that the recognition accuracy of the CNN-SVM algorithm was 99.8%, and the recognition time of a single image was 0.024 s. Compared to the classic CNN and SVM algorithms, the proposed algorithm had a better effect on the recognition of small fields and strong interference, while simultaneously having advantages of high recognition accuracy, small calculation scale, and sensitivity to local features. This research not only provides algorithm reserves for the research and development of garlic automatic intelligent seeding equipment, but can also be promoted to other small object recognition.
Key words: garlic scale buds, orientation recognition, convolutional neural network, support vector machine, classification optimization, deep learning
中图分类号:
S223.2
相关知识
探索花卉识别新境界:基于CNN
枸杞病害识别:基于区分深度置信网络的图像分类模型
基于Matlab花卉识别分类系统
基于花授粉算法优化实现SVM数据分类
毕业设计:基于深度学习的野生花卉识别分类算法系统 目标检测
基于半监督主动学习的菊花表型分类研究
colab cnn实现花卉图片分类识别
基于CNN
基于深度学习特征的植物病虫害检测
农作物病害识别与分类
网址: 基于CNN和SVM分类优化的大蒜鳞芽朝向识别研究 https://www.huajiangbk.com/newsview1572984.html
上一篇: 紫皮蒜和白皮蒜有区别吗?下次去菜 |
下一篇: 小心违法!你买的这种“蒜”可能是 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039