甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展
摘要: 甲氧基丙烯酸酯类杀菌剂是目前全球销量最大的一类杀菌剂,其广泛应用已导致该类药剂进入并污染水体环境。大量研究表明,该类杀菌剂在较低浓度下即可对水生生物产生较高毒性,在不同层次影响水生生物的生长、发育和繁殖,对水生生态系统的安全存在风险。文章对甲氧基丙烯酸酯类杀菌剂在水体环境中的残留水平、生物富集、对水生生物的急/慢性毒性效应,以及对水生生物组织形态、酶活性与蛋白表达、基因表达等方面影响的研究进展进行了综述,并讨论了该类杀菌剂今后的生态毒理学研究重点,以期为进一步研究其对水生生物的毒性效应及作用机理,以及制定相关策略以减少该类杀菌剂对水生生态系统的风险提供依据。
Abstract: Strobilurins are fungicides with the largest sales around the world currently. The wide application of strobilurins has led to its pollution in the water environment. Many studies have reported that strobilurin fungicides are highly toxic to aquatic organisms even at very low concentrations, affecting the growth, development and reproductivity of aquatic organisms at different levels, posing risk to the safety of aquatic ecosystems. In this paper, the research progress was reviewed from strobilurin fungicides’ residues in water environment, bioaccumulation, as well as their acute and chronic toxic effects on aquatic organisms, and the influence on morphology, enzyme activity, protein and gene expression level of aquatic organisms. Focus on the future study in ecotoxicology of strobilurins was also discussed. The main purpose is to provide literature basis for further study on toxic effects and mechanisms of strobilurin fungicides to aquatic organisms, and developing strategies to reduce risk to aquatic ecosystems.
图 1 吡唑醚菌酯、肟菌酯和啶氧菌酯对斑马鱼胚胎的致畸效应[32]
注:a、b、c、d分别为对照组受精后24、48、72和96 h 的正常胚胎;e、f、g、h分别为处理组受精后24、48、72和96 h 的胚胎。GR:生长迟滞;PE:心包水肿;YSE:卵黄囊水肿;YSD:卵黄囊畸形;PD:黑色素沉积减少。
Figure 1. Teratogenic effects of pyraclostrobin, trifloxystrobin and picoxystrobin on zebrafish embryos[32]
Note: a, b, c, d indicate normal embryos at 24, 48, 72 and 96 h post-fertilization in control group, respectively; e, f, g, h indicate embryos at 24, 48, 72 and96 h post-fertilization in treated group, respectively. GR: growth retardation; PE: pericardial edema; YSE: yolk sac edema; YSD: yolk sac deformity;PD: pigmentation defect.
表 1 甲氧基丙烯酸酯类杀菌剂对不同水生生物的急性毒性数据
Table 1 Acute toxicity of strobilurin fungicides to different aquatic organisms
杀菌剂Fungicide生物类别
Type of organisms毒性数据
Toxicity data/(mg/L)参考文献
Reference 嘧菌酯
azoxystrobin羊角月牙藻 Selenastrum capricornutumEC50 (72 h) 0.165[26]IC50 (72 h) 0.230[23]小球藻 Chlorella vulgarisIC50 (96 h) 0.510[27]大型溞 Daphnia magnaEC50 (48 h) 0.221[26]LC50 (96 h) 0.230[23]斑马鱼 (成鱼) Danio rerio (adults)LC50 (96 h) 1.090[22]LC50 (96 h) 0.817[26]LC50 (96 h) 1.370[28]LC50 (96 h) 0.393[29]斑马鱼 (仔鱼) D. rerio (larvae)LC50 (96 h) 0.390[28]斑马鱼 (胚胎) D. rerio (embryos)LC50 (96 h) 0.610[28]草鱼 (幼鱼) Ctenopharyngodon idella (juvenile)LC50 (48 h) 0.549[30]吡唑醚菌酯
pyraclostrobin羊角月牙藻 S. capricornutumEC50 (72 h) 0.451[26]IC50 (72 h) 1.400[23]大型溞 D. magnaEC50 (48 h) 0.023[26]LC50 (96 h) 0.014[23]斑马鱼 (成鱼) D. rerio (adults)LC50 (96 h) 0.064[29]LC50 (96 h) 0.031[26]LC50 (96 h) 0.076[31]LC50 (96 h) 0.061[22]斑马鱼 (仔鱼) D. rerio (larvae)LC50 (96 h) 0.030[31]斑马鱼 (胚胎) D. rerio (embryos)LC50 (96 h) 0.058[31]LC50 (96 h) 0.061[32]热带爪蟾 Xenopus tropicalisLC50 (48 h) 0.007[21]蓝鳃太阳鱼 Lepomis macrochirusLC50 (96 h) 0.011[33]大平原蟾蜍 (蝌蚪) Bufo cognatus (tadpole)LC50 (72 h) 0.010[34]蜗牛 Helisoma trivolvisLC50 (96 h) 0.441[35]端足虫 Hyalella aztecaLC50 (96 h) 0.022[36]肟菌酯
trifloxystrobin羊角月牙藻 S. capricornutumIC50 (72 h) 0.120[23]大型溞 D. magnaLC50 (96 h) 0.530[23]稀有鮈鲫 Gobiocypris rarusLC50 (144 h) 0.001[18]热带爪蟾 X. tropicalisLC50 (48 h) 0.030[21]草鱼 (幼鱼) C. idella (juvenile)LC50 (48 h) 0.051[30]斑马鱼 (胚胎) D. rerio (embryos)LC50 (96 h) 0.055[32]端足虫 H. aztecaLC50 (96 h) 0.030[36]蓝鳃太阳鱼 L. macrochirusLC50 (96 h) 0.054[33]虹鳟鱼 Oncorhynchus mykissLC50 (96 h) 0.015~0.078[37]大平原蟾蜍 (蝌蚪) Bufo cognatus (tadpole)LC50 (72 h) 0.104[34]啶氧菌酯
picoxystrobin斑马鱼 (成鱼) D. rerio (adults)LC50 (96 h) 0.212[29]斑马鱼 (胚胎) D. rerio (embryos)LC50 (96 h) 0.086[32]热带爪蟾 X. tropicalisLC50 (48 h) 0.037[21]醚菌酯
kresoxim-methyl热带爪蟾 X. tropicalisLC50 (48 h) 0.197[21]草鱼 (幼鱼) C. idella (juvenile)LC50 (48 h) 0.338[30]中华大蟾蜍 (蝌蚪) Bufo gargarizans (tadpole)LC50 (72 h) 1.410[38]斑马鱼 (成鱼) D. rerio (adults)LC50 (96 h) 0.436[39]斑马鱼 (幼鱼) D. rerio (juvenile)LC50 (96 h) 0.328[39]斑马鱼 (仔鱼) D. rerio (larvae)LC50 (96 h) 0.224[39]斑马鱼 (胚胎) D. rerio (embryos)LC50 (96 h) 0.340[39]唑菌酯
pyraoxystrobin羊角月牙藻 S. capricornutumEC50 (72 h) 0.008[40]椎实螺 Radix swinhoeiLC50 (96 h) 0.027[40]白旋螺 Gyraulus albusLC50 (96 h) 0.520[40]介形虫 OstracodaEC50 (48 h) 0.009[40]斑节对虾 Penaeus monodonLC50 (96 h) 0.035[40]隆线溞 Daphnia carinataEC50 (48 h) 0.003[40]伊兰猛水蚤 Elaphoidella spe.EC50 (48 h) 0.010[40]大型溞 D. magnaEC50 (48 h) 0.008[40]幽蚊 ChaoborusLC50 (96 h) 0.082[40]青鳉鱼 Oryzias latipesLC50 (96 h) 0.001[40]稀有鮈鲫 G. rarusLC50 (96 h) 0.002[40]斑马鱼 (成鱼) D. rerio (adults)LC50 (96 h) 0.006[25]斑马鱼 (仔鱼) D. rerio (larvae)LC50 (96 h) 0.001[25]斑马鱼 (胚胎) D. rerio (embryos)LC50 (96 h) 0.004[25]氟嘧菌酯
fluoxastrobin羊角月牙藻 S. capricornutumEC50 (72 h) 2.100[41]大型溞 D. magnaLC50 (96 h) 0.480[41]虹鳟鱼 O. mykissLC50 (96 h) 0.435[41] [1] 张国生. 甲氧基丙烯酸酯类杀菌剂的应用、开发现状及展望[J]. 农药科学与管理, 2003, 24(12): 30-34. doi: 10.3969/j.issn.1002-5480.2003.12.014
ZHANG G S. Current status of application, development and prospect of strobin fungicides[J]. Pestic Sci Adm, 2003, 24(12): 30-34. doi: 10.3969/j.issn.1002-5480.2003.12.014
[2]BALBA H. Review of strobilurin fungicide chemicals[J]. J Environ Sci Heal B, 2007, 42(4): 441-451. doi: 10.1080/03601230701316465
[3] 严明, 柏亚罗. 甲氧基丙烯酸酯类等四大类杀菌剂市场概况及前景展望[J]. 现代农药, 2016, 15(6): 1-8. doi: 10.3969/j.issn.1671-5284.2016.06.001YAN M, BAI Y L. Market overview and prospect outlook on four fungicide sectors including methoxyacrylates[J]. Modern Agrochemicals, 2016, 15(6): 1-8. doi: 10.3969/j.issn.1671-5284.2016.06.001
[4]Phillips McDougall-AgriService. Products section-2015 market[R]. Phillips McDougall-AgriService, 2016.
[5]BARTLETT D W, CLOUGH J M, GODWIN J R, et al. The strobilurin fungicides[J]. Pest Manag Sci, 2002, 58: 649-662. doi: 10.1002/ps.520
[6]RABIET M, MARGOUM C, GOUY V, et al. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment: effect of sampling frequency[J]. Environ Pollut, 2010, 158(3): 737-748. doi: 10.1016/j.envpol.2009.10.014
[7]FILHO A M, DOS SANTOS F N, DE P PEREIRA P A. Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples[J]. Microchem J, 2010, 96(1): 139-145. doi: 10.1016/j.microc.2010.02.018
[8]JØRGENSEN L F, KJÆR J, OLSEN P, et al. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites[J]. Chemosphere, 2012, 88(5): 554-562. doi: 10.1016/j.chemosphere.2012.03.027
[9]CHAU H T C, KADOKAMI K, DUONG H T, et al. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam[J]. Environ Sci Pollut Res, 2018, 25(8): 7147-7156. doi: 10.1007/s11356-015-5060-z
[10]LIESS M, OHE P C V D. Analyzing effects of pesticides on invertebrate communities in streams[J]. Environ Toxicol Chem, 2005, 24(4): 954-965. doi: 10.1897/03-652.1
[11]WIGHTWICK A M, BUI A D, ZHANG P, et al. Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia[J]. Arch Environ Contam Toxicol, 2012, 62(3): 380-390. doi: 10.1007/s00244-011-9710-y
[12]MIMBS W H IV, CUSAAC J P W, SMITH L M, et al. Occurrence of current-use fungicides and bifenthrin in rainwater basin wetlands[J]. Chemosphere, 2016, 159: 275-281. doi: 10.1016/j.chemosphere.2016.06.012
[13]GUO X Y, WU W Z, SONG N H, et al. Residue dynamics and risk assessment of pyraclostrobin in rice, plants, hulls, field soil, and paddy water[J]. Hum Ecol Risk Assess: Int J, 2017, 23(1): 67-81. doi: 10.1080/10807039.2016.1222579
[14]CAO M C, LI S Y, WANG Q S, et al. Track of fate and primary metabolism of trifloxystrobin in rice paddy ecosystem[J]. Sci Total Environ, 2015, 518-519: 417-423. doi: 10.1016/j.scitotenv.2015.03.028
[15]SMALLING K L, KUIVILA K M, ORLANDO J L, et al. Environmental fate of fungicides and other current-use pesticides in a central California estuary[J]. Mar Pollut Bull, 2013, 73(1): 144-153. doi: 10.1016/j.marpolbul.2013.05.028
[16]SMALLING K L, REEVES R, MUTHS E, et al. Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture[J]. Sci Total Environ, 2015, 502: 80-90. doi: 10.1016/j.scitotenv.2014.08.114
[17]OLIVEIRA F A, REIS L P G, SOTO-BLANCO B, et al. Pesticides residues in the Prochilodus costatus(Valenciennes, 1850) fish caught in the São Francisco river, Brazil[J]. J Environ Sci Heal Part B, 2015, 50(6): 398-405. doi: 10.1080/03601234.2015.1011946
[18]ZHU B, LIU G L, LIU L, et al. Assessment of trifloxystrobin uptake kinetics, developmental toxicity and mRNA expression in rare minnow embryos[J]. Chemosphere, 2015, 120: 447-455. doi: 10.1016/j.chemosphere.2014.07.100
[19]BELDEN J, MCMURRY S, SMITH L, et al. Acute toxicity of fungicide formulations to amphibians at environmentally relevant concentrations[J]. Environ Toxicol Chem, 2010, 29(11): 2477-2480. doi: 10.1002/etc.297
[20]BRINGOLF R B, COPE W G, EADS C B, et al. Acute and chronic toxicity of technical-grade pesticides to glochidia and juveniles of freshwater mussels (unionidae)[J]. Environ Toxicol Chem, 2007, 26(10): 2086. doi: 10.1897/06-522R.1
[21]LI D, LIU M Y, YANG Y S, et al. Strong lethality and teratogenicity of strobilurins on Xenopus tropicalis embryos: basing on ten agricultural fungicides[J]. Environ Pollut, 2016, 208(Pt B): 868-874.
[22] 贾伟, 蒋红云, 张兰, 等. 4 种甲氧基丙烯酸酯类杀菌剂不同剂型对斑马鱼急性毒性效应[J]. 生态毒理学报, 2016, 11(6): 242-251.JIA W, JIANG H Y, ZHANG L, et al. Acute toxicity of different formulation of four strobilurin fungicides to the zebrafish (Brachydonio rerio)[J]. Asian J Ecotoxicol, 2016, 11(6): 242-251.
[23]OCHOA-ACUÑA H G, BIALKOWSKI W, YALE G, et al. Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna[J]. Ecotoxicology, 2009, 18(4): 440-446. doi: 10.1007/s10646-009-0298-1
[24]JIANG J H, WU S G, LV L, et al. Mitochondrial dysfunction, apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages[J]. Environ Pollut, 2019, 253: 722-730. doi: 10.1016/j.envpol.2019.07.081
[25]LI H, YU S, CAO F J, et al. Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio)[J]. Ecotoxicol Environ Saf, 2018, 151: 1-9. doi: 10.1016/j.ecoenv.2017.12.061
[26] 李祥英, 梁慧君, 何裕坚, 等. 5 种杀菌剂对 3 种水生生物的急性毒性与安全性评价[J]. 广东农业科学, 2014, 41(16): 125-128. doi: 10.3969/j.issn.1004-874X.2014.16.027LI X Y, LIANG H J, HE Y J, et al. Acute toxicity and safety assessment of five fungicides to three aquatic organisms[J]. Guangdong Agric Sci, 2014, 41(16): 125-128. doi: 10.3969/j.issn.1004-874X.2014.16.027
[27]LIU L, ZHU B, WANG G X. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris[J]. Environ Sci Pollut Res, 2015, 22(10): 7766-7775. doi: 10.1007/s11356-015-4121-7
[28] 穆希岩, 黄瑛, 罗建波, 等. 通过多阶段暴露试验评价嘧菌酯对斑马鱼的急性毒性与发育毒性[J]. 环境科学学报, 2017, 37(3): 1122-1132.MU X Y, HUANG Y, LUO J B, et al. Evaluation of acute and developmental toxicity of azoxystrobin on zebrafish via multiple life stage assays[J]. Acta Scientiae Circumstantiae, 2017, 37(3): 1122-1132.
[29] 刘小波, 朱宏建. 3 种甲氧基丙烯酸酯类农药对斑马鱼急性毒性评价[J]. 现代农业科技, 2015(15): 125-126. doi: 10.3969/j.issn.1007-5739.2015.15.074LIU X B, ZHU H J. Acute toxicity of three strobilurin fungicide on Brachydonio rerio[J]. Mod Agric Sci Technol, 2015(15): 125-126. doi: 10.3969/j.issn.1007-5739.2015.15.074
[30]LIU L, JIANG C, WU Z Q, et al. Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles[J]. Ecotoxicol Environ Saf, 2013, 98: 297-302. doi: 10.1016/j.ecoenv.2013.10.011
[31] 李祥英, 李志鸿, 张宏涛, 等. 吡唑醚菌酯对不同阶段斑马鱼的毒性效应评价[J]. 生态毒理学报, 2017, 12(4): 234-241.LI X Y, LI Z H, ZHANG H T, et al. Evaluation of toxicity effects of pyraclostrobin via multiple stage zebrafish assays[J]. Asian J Ecotoxicol, 2017, 12(4): 234-241.
[32]LI H, CAO F J, ZHAO F, et al. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos[J]. Chemosphere, 2018, 207: 781-790. doi: 10.1016/j.chemosphere.2018.05.146
[33]US Environmental Protection Agency. ECOTOX user guide: ECOTOXicology database system[DB/OL]. Version 4.0, 2007. [2019-08-05]. http://cfpub.epa.gov/ecotox.
[34]HOOSER E A, BELDEN J B, SMITH L M, et al. Acute toxicity of three strobilurin fungicide formulations and their active ingredients to tadpoles[J]. Ecotoxicology, 2012, 21(5): 1458-1464. doi: 10.1007/s10646-012-0899-y
[35]MORRISON S A, BELDEN J B. Development of Helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides[J]. Environ Toxicol Chem, 2016, 35(9): 2320-2329. doi: 10.1002/etc.3400
[36]MORRISON S A, MCMURRY S T, SMITH L M, et al. Acute toxicity of pyraclostrobin and trifloxystrobin to Hyalella azteca[J]. Environ Toxicol Chem, 2013, 32(7): 1516-1525.
[37]JUNGES C M, PELTZER P M, LAJMANOVICH R C, et al. Toxicity of the fungicide trifloxystrobin on tadpoles and its effect on fish-tadpole interaction[J]. Chemosphere, 2012, 87(11): 1348-1354. doi: 10.1016/j.chemosphere.2012.02.026
[38] 韦力, 雷焕宗, 邵伟伟, 等. 异丙甲草胺、醚菌酯和咪鲜胺锰盐对中华大蟾蜍蝌蚪的急性毒性效应[J]. 动物学杂志, 2016, 51(1): 45-56.WEI L, LEI H Z, SHAO W W, et al. Acute lethal toxic effects of metolachlor, kresoxim-methyl and prochloraz-manganese chloride complex to the Chinese toad (Bufo gargarizans) tadpoles[J]. Chin J Zool, 2016, 51(1): 45-56.
[39]JIANG J H, LV L, WU S G, et al. Developmental toxicity of kresoxim-methyl during zebrafish (Danio rerio) larval development[J]. Chemosphere, 2019, 219: 517-525. doi: 10.1016/j.chemosphere.2018.12.061
[40]CHEN L, SONG Y F, TANG B H, et al. Aquatic risk assessment of a novel strobilurin fungicide: a microcosm study compared with the species sensitivity distribution approach[J]. Ecotoxicol Environ Saf, 2015, 120: 418-427. doi: 10.1016/j.ecoenv.2015.06.027
[41] 周艳明, 刘西莉, 姜辉, 等. QoI 类杀菌剂环境风险浅析[J]. 农药科学与管理, 2019, 40(5): 23-30. doi: 10.3969/j.issn.1002-5480.2019.05.007ZHOU Y M, LIU X L, JIANG H, et al. A brief analysis on the environmental risk of QoI fungicides[J]. Pestic Sci Adm, 2019, 40(5): 23-30. doi: 10.3969/j.issn.1002-5480.2019.05.007
[42]LI H, ZHAO F, CAO F J, et al. Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae[J]. Environ Pollut, 2019, 251: 203-211. doi: 10.1016/j.envpol.2019.04.122
[43]CUI F, CHAI T T, LIU X X, et al. Toxicity of three strobilurins(kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna[J]. Environ Toxicol Chem, 2017, 36(1): 182-189. doi: 10.1002/etc.3520
[44]SHEN Y F, LIU L, GONG Y X, et al. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris[J]. Environ Toxicol Pharmacol, 2014, 37(3): 1040-1047. doi: 10.1016/j.etap.2014.04.006
[45]CAO F, LI H, ZHAO F, et al. Parental exposure to azoxystrobin causes developmental effects and disrupts gene expression in F1 embryonic zebrafish (Danio rerio)[J]. Sci Total Environ, 2019, 646: 595-605. doi: 10.1016/j.scitotenv.2018.07.331
[46]FIDDER B N, REÁTEGUI-ZIRENA E G, OLSON A D, et al. Energetic endpoints provide early indicators of life history effects in a freshwater gastropod exposed to the fungicide, pyraclostrobin[J]. Environ Pollut, 2016, 211: 183-190. doi: 10.1016/j.envpol.2015.12.018
[47]CAO F J, ZHU L Z, LI H, et al. Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio)[J]. Environ Pollut, 2016, 219: 1109-1121. doi: 10.1016/j.envpol.2016.09.015
[48]CAO F, MARTYNIUK C J, WU P, ET AL. Long-term exposure to environmental concentrations of azoxystrobin delays sexual development and alters reproduction in zebrafish (Danio rerio)[J]. EnvironSci Technol, 2019, 53(3): 1672-1679. doi: 10.1021/acs.est.8b05829
[49]GUSTAFSSON K, BLIDBERG E, ELFGREN I K, et al. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms[J]. Ecotoxicology, 2010, 19(2): 431-444. doi: 10.1007/s10646-009-0428-9
[50]VAN WIJNGAARDEN R P, BELGERS D J, ZAFAR M I, et al. Chronic aquatic effect assessment for the fungicide azoxystrobin[J]. Environ Toxicol Chem, 2014, 33(12): 2775-2785. doi: 10.1002/etc.2739
[51]ZAFAR M I, BELGERS J D, VAN WIJNGAARDEN R P, et al. Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms[J]. Ecotoxicology, 2012, 21(4): 1024-1038. doi: 10.1007/s10646-012-0856-9
[52]DU B B, ZHANG Z Y, LIU W Y, et al. Acute toxicity of the fungicide azoxystrobin on the diatom Phaeodactylum tricornutum[J]. Ecotoxicol Environ Saf, 2019, 168: 72-79. doi: 10.1016/j.ecoenv.2018.10.074
[53]CAO F J, WU P Z, HUANG L, et al. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio)[J]. Aquat Toxicol, 2018, 198: 129-140. doi: 10.1016/j.aquatox.2018.02.023
[54]GARANZINI D S, MENONE M L. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense[J]. Bull Environ Contam Toxicol, 2015, 94(2): 146-151. doi: 10.1007/s00128-014-1428-x
[55]JIA W, MAO L G, ZHANG L, et al. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio)[J]. Chemosphere, 2018, 207: 573-580. doi: 10.1016/j.chemosphere.2018.05.138
[56]ZHANG C, WANG J, ZHANG S, et al. Acute and subchronic toxicity of pyraclostrobin in zebrafish (Danio rerio)[J]. Chemosphere, 2017, 188: 510-516. doi: 10.1016/j.chemosphere.2017.09.025
[57]ZHANG C, ZHOU T, WANG J, et al. Acute and chronic toxic effects of fluoxastrobin on zebrafish (Danio rerio)[J]. Sci Total Environ, 2018, 610(1): 769-775.
[58]ZHU L F, WANG H L, LIU H J, et al. Effect of trifloxystrobin on hatching, survival, and gene expression of endocrine biomarkers in early life stages of medaka (Oryzias latipes)[J]. Environ Toxicol, 2015, 30(6): 648-655. doi: 10.1002/tox.21942
[59]OLSVIK P A, KROGLUND F, FINSTAD B, et al. Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt[J]. Ecotoxicol Environ Saf, 2010, 73(8): 1852-1861. doi: 10.1016/j.ecoenv.2010.07.017
[60] 那晓磊, SHBAITA H, 朱春雨, 等. 巴斯夫 9% 吡唑醚菌酯微囊悬浮剂技术特点分析[J]. 农药科学与管理, 2018, 39(7): 28-34. doi: 10.3969/j.issn.1002-5480.2018.07.009NA X L, SHBAITA H, ZHU C Y, et al. Analysis of technical characteristics of BASF pyraclostrobin 9% CS[J]. Pestic Sci Admin, 2018, 39(7): 28-34. doi: 10.3969/j.issn.1002-5480.2018.07.009
[61]GARG P, JAIN D K, SAXENA R. In vitro anti-oxidant effect of vitamin E on oxidative stress induced due to pesticides in rat erythrocytes[J]. Toxicol Int, 2011, 18(1): 73. doi: 10.4103/0971-6580.75871
[62]OZKAN F, GUNDUZ S G, BERKOZ M, et al. The protective role of ascorbic acid (vitamin C) against chlorpyrifos-induced oxidative stress in Oreochromis niloticus[J]. Fish Physiol Biochem, 2012, 38(3): 635-643. doi: 10.1007/s10695-011-9544-6
[63] 李慧. 三种甲氧基丙烯酸酯类杀菌剂对斑马鱼毒性效应及作用机制研究[D]. 北京: 中国农业大学, 2019.LI H. Toxic effects and mechanisms of three strobilurin fungicides on zebrafish (Danio rerio) [D]. Beijing: China Agricultural University, 2019.
相关知识
科迪华新型吡啶酰胺类杀菌剂fenpicoxamid(Inatreq)
【关注】琥珀酸脱氢酶抑制剂类(SDHI)杀菌剂必将成为全球杀菌剂市场主体
嘧菌酯和多菌灵对几种植物病原菌生物活性测定
″X菌酯″类杀菌剂使用指南
重磅选择性杀菌剂与传统保护性杀菌剂,谁是真正的“款爷”?
重磅选择性杀菌剂与传统保护性杀菌剂,谁是真正的“款爷”?
【观点】我国创制农药历史回顾,杀菌剂将成为未来农药研发主战场
多溴联苯醚的植物毒理学研究进展
六种杀菌剂对黄瓜霜霉病菌各发育阶段的影响
杀菌剂抗产孢作用是怎样的?
网址: 甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展 https://www.huajiangbk.com/newsview1451366.html
上一篇: 杀菌剂新产品田间药效试验评价概述 |
下一篇: 三唑类杀菌剂主要品种国内外登记管 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039