首页 分享 组合型生态浮床对水体修复及植物氮磷吸收能力研究

组合型生态浮床对水体修复及植物氮磷吸收能力研究

来源:花匠小妙招 时间:2024-12-29 21:34

摘要:在天鹅湖水体中构建以水生植物和陆生喜水植物为实验植物,浮法控制器、水循环增氧系统和造浪-输送系统相集合的组合型生态浮床。在中试研究中,研究了其对天鹅湖上覆水和沉积物中营养物质的修复动态。结果表明,经过4个多月的组合型生态浮床生态修复,天鹅湖上覆水中TN、NH4+-N和TP的去除率分别达到61.92%、63.09%和80.0%,沉积物中TN和NH4+-N含量的去除率分别达到23.79%和37.04%,TP含量升高了43.71%;组合型生态浮床的5种浮床植物的氮磷累积量差异显著,再力花和美人蕉对氮磷的吸收速率显著高于菖蒲、薄荷和水稻,再力花和美人蕉对氮的吸收速率达到12.19 g/(m2·d)和7.90 g/(m2·d),对磷吸收分别达到0.81 g/(m2·d)和0.99 g/(m2·d)。美人蕉和再力花对氮磷的吸收量均是茎叶>根系,其中美人蕉茎叶氮、磷吸收量分别为根系的2.73倍和1.93倍,再力花分别为1.83倍和1.19倍,通过浮床系统植物水上部分的收割可以去除水体中的氮磷。

关键词:组合型生态浮床 / 浮床植物 / 上覆水 / 沉积物 / 氮 / 磷

Abstract:A new type of combined ecological floating bed (CEFD) was developed in our study, which combined aquatic plants, hydrophilous plants and ancillary equipments that include floating controllers, water-cycling aerator systems and wave-making systems. The pilot study on remediation of the overlying water and the sediment of Swan Lake was carried out. Results showed that the removal efficiencies of TN, NH4+-N and TP were 61.92%, 63.09% and 80.0%, respectively in overlying water, while the removal efficiencies of TN and NH4+-N were 23.79% and 37.04%, respectively, and the concentration of TP increased by 43.71% in sediment after more than 4 months operation of the CEFD. The differences of accumulation of nitrogen (N) and phosphorus (P) in the 5 kinds of floating-bed plants were significant. The uptake rates of Thalia dealbata and Canna indica were higher than that of Acorus tatarinowii Schott, Herba menthae and O. Sativa L. The N uptake rates of Thalia dealbata and Canna indica were 12.19 g/(m2·d) and 7.90 g/(m2·d) with 0.81 g/(m2·d) and 0.99 g/(m2·d) to the P uptake rate respectively. The N and P uptake amounts in stems/leaves of Thalia dealbata and Canna indica were greater than that in roots. The ratios between stems/leaves and roots of N, P content were 2.73 and 1.93 in Canna indica respectively, while that were 1.83 and 1.19 in Thalia dealbata. Thus, the N and P in stems/leaves of floating-bed plants could be removed by reaping.

[1]刘娅琴, 邹国燕, 宋祥甫, 等. 框式复合型生态浮床对富营养水体浮游植物群落结构的影响.水生生物学报, 2010,34(1):196-203 Liu Y. Q., Zhou G. Y., Song X. F., et al. Effects of phytoplankton on community structure of box type complex ecological floating bed. Acta Hydrobiologica Sinica, 2010,34(1):196-203(in Chinese) [2]任照阳, 邓春光. 生态浮床技术应用研究进展. 农业环境科学学报, 2007,26(增刊):261-263 Ren Z. Y., Deng C. G. Application of ecological floating bed technology. Journal of Agro-Environment Science, 2007,26(S1):261-263(in Chinese) [3]Kivaisi A. K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review.Ecological Engineering, 2001,16(4):545-560 [4]Peterson S. B., John M. T. The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering,1996,6(1):137-148 [5]国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002.101 [6]金相灿, 屠清瑛. 湖泊富营养化调查规范(第2版). 北京:中国环境科学出版社, 1990.208-229 [7]吴建之, 葛滢, 王晓月. 过硫酸钾氧化吸光光度法测定植物总氮. 理化检验:化学分册, 2000,36(4):166-167 Wu J. Z., Ge Y., Wang X. Y. UV absorptiophotometric determination of total nitrogen in plant after K2S2O8 oxidation. Physical Testing and Chemical Analysis Part B: Chemical Analgsis, 2000,36(4):166-167 [8]许桂芳, 张朝阳, 向佐湘. 植物浮床在净化城市景观水体中的应用.林业调查规划, 2009,34(6):123-126 Xu G. F., Zhang Z. Y., Xiang Z. X. Application of plant floating bed in purifying the waters for urban landscape. Forest Inventory and Planning, 2009,34(6):123-126(in Chinese) [9]郑立国, 杨仁斌, 胡佑忠, 等. 矩阵生态工程系统技术修复 富营养化水体的优越性. 农业环境与发展, 2010,27(2):48-51 Zheng L. G., Yang R. B., Hu Y. Z., et al. The superiority of remediation eutrophication by matrix ecological engineering system technology. Acro-Environment & Development, 2010,27(2):48-51(in Chinese) [10]刘臣炜, 汪德爟. 湖泊富营养化内源污染的机理和控制技术研究. 农业环境科学学报, 2006,25(S2):814-818 Liu C. W., Wang D. G. Principle and control of eutrophication for lakes polluted by internal origin. Journal of Agro-Environment Science, 2006,25(S2):814-818(in Chinese) [11]冯太国, 万新南. 富营养化对湖泊的危害及修复技术探讨. 水土保持研究, 2006,13(2):145-146 Feng T. G., Wan X. N. The harms of eutrophication and analysis of restoration method to lake. Research of Soil and Water Conservation, 2006,13(2):145-146(in Chinese) [12]吴建强, 黄沈发, 丁玲. 水生植物水体修复机理及其影响因素. 水资源保护, 2007,23(4):18-22 Wu J. Q., Hang S. F., Ding L. Mechanisms of water restoration by aquatic plants and its influencing factors. Water Resources Protection, 2007,23(4):18-22(in Chinese) [13]王芳, 田秀平, 韩晓日, 等.不同处理池塘底泥有机磷组分及其对水体有效磷的贡献. 土壤通报, 2010,41(1):112-116 Wang F., Tian X. P., Han X. R., et al. The different treatments organic phosphorus fractions and its contribution to AP in ponds. Chinese Journal of Soil Science, 2010,41(1):112-116(in Chinese) [14]李大鹏, 黄勇. 底泥间歇扰动对静止水体磷迁移的累加效应. 环境化学, 2010,29(6):1075-1078 Li D. P., Huang Y. Accumulation effect of intermittent sediment disturbance on phosphorus migration in static water. Environmental Chemistry, 2010,29(6):1075-1078(in Chinese) [15]李大鹏, 黄勇, 李勇, 等. 沉积物扰动持续时间对悬浮物中磷形态数量分布的影响. 环境科学, 2012,33(2):379-384 Li D. P., Huang Y., Li Y., et al. Impacts of sediment disturbance time on the distribution of phosphorus form in suspended solids. Environmental Science, 2012,33(2):379-384(in Chinese) [16]李大鹏, 黄勇, 李伟光. 不同曝气方式对底泥吸收磷的影响. 水处理技术, 2007,33(11):17-19 Li D. P., Huang Y., Li W. G. Effect of different aeration ways on phosphorus adsorption on sediments. Technology of Water Treatment, 2007,33(11):17-19(in Chinese)

相关知识

千屈菜生态浮床对景观水体的净化作用
不同植物组合的生态浮床对浅水富营养化湖泊水质净化效果及浮游动物群落结构的影响
生物浮岛技术的研发历程及在水体生态修复中的应用
生态浮岛技术及其在富营养化水体修复中的应用研究
生态组合技术净化城市景观水体的现场试验研究
“生态浮岛+”对黑臭水体的净化效果与机制研究
冬季低温条件下浮床植物对富营养化水体的净化效果
三种浮叶植物对富营养化水体净化效果研究
生物浮岛技术的研发历程及在水体生态修复中的应用.pdf
植物修复农田退水氮、磷污染研究进展

网址: 组合型生态浮床对水体修复及植物氮磷吸收能力研究 https://www.huajiangbk.com/newsview1359644.html

所属分类:花卉
上一篇: 无锡古运河生态浮岛工程设计方案
下一篇: 山村代课老师患癌4年坚守讲台 两

推荐分享