首页 分享 GRF转录因子对植物生长发育及胁迫响应调控的分子机制

GRF转录因子对植物生长发育及胁迫响应调控的分子机制

来源:花匠小妙招 时间:2024-12-26 06:00
[1]Wang H, Wang H, Shao H, Tang X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016, 7(248): 67-79[本文引用:1][2]陈娜, 迟晓元, 程果, 潘丽娟, 陈明娜, 王通, 王冕, 杨珍, 禹山林. 花生中低温胁迫相关转录因子基因的筛选[J]. 核农学报, 2016, 30(1): 19-27[本文引用:1][3]Michael L, Robert T. Transcription regulation and animal diversity[J]. Nature, 2003, 424(6945): 147-151[本文引用:1][4]Knaap E V D, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiology, 2000, 122(3): 695-704[本文引用:5][5]Kim J H, Lee B H. GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem[J]. Journal of Plant Biology, 2006, 49(6): 463-468[本文引用:4][6]Horiguchi G, Kim G T, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant Journal, 2005, 43(1): 68-78[本文引用:6][7]Kima J S, Mizoia J, Kidokoroa S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis growth-regulating factor 7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A[J]. Plant Cell, 2012, 24(8): 3393-3405[本文引用:4][8]Bao M, Bian H, Zha Y, Li F, Sun Y, Bai B, Chen Z, Wang J, Zhu M, Han N. miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings[J]. Plant & Cell Physiology, 2014, 55(7): 1343-1353[本文引用:8][9]Liang G, He H, Li Y, Wang F, Yu D. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis[J]. Plant Physiology, 2014, 164(1): 249-258[本文引用:3][10]Debernardi J M, Mecchia M A, Vercruyssen L. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant Journal, 2014, 79(3): 413-426[本文引用:4][11]Kim J H, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant Journal, 2003, 36(1): 94-104[本文引用:7][12]Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z Y, Huang H, Cui X F. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(2): 761-773[本文引用:1][13]Zhang D F, Li B, Jia G Q, Zhang T F, Dai J R, Li J S, Wang S C. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L. )[J]. Plant Science, 2008, 175(6): 809-817[本文引用:2][14]Liu J, Hua W, Yang H L, Zhang G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. Journal of Experimental Botany, 2012, 63(10): 3727-3740[本文引用:2][15]Xie M, Zhang S, Yu B. microRNA biogenesis, degradation and activity in plants[J]. Cellular & Molecular Life Sciences Cmls, 2015, 72(1): 1-13[本文引用:1][16]Yang F, Liang G, Liu D, Yu D. Arabidopsis miR396 mediates the development of leaves and flowers in transgenic tobacco[J]. Journal of Plant Biology, 2009, 52(5): 475-481[本文引用:2][17]Baucher M, Moussawi J, Vand eputte O M, Monteyne D, Mol A, Pérez-Morga D, Jaziri E I. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of populus trichocarpa miR396c in transgenic tobacco[J]. Plant Biology, 2013, 15(5): 892-898[本文引用:1][18]Rodriguez R E, Mecchia M A, Debernardi J M. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 1991, 137(1): 103-112[本文引用:1][19]Lee B H, Wynn A N, Franks R G, Hwang Y S, Lim J, Kim J H. The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive[J]. Developmental Biology, 2014, 386(1): 12-24[本文引用:2][20]Tsukaya H. Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theories[J]. International Review of Cytology, 2002, 217(4): 1-39[本文引用:2][21]Fujikura U, Horiguchi G, Ponce M R, Micol J L, Tsukaya H. Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana[J]. Plant Journal for Cell & Molecular Biology, 2009, 59(3): 499-508[本文引用:1][22]Kawade K, Horiguchi G, Usami T, Hirai M Y, Tsukaya H. ANGUSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves[J]. Current Biology, 2013, 23(9): 788-792[本文引用:1][23]Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expand ed leaves[J]. Plant Journal, 2007, 51(2): 173-184[本文引用:1][24]Kanei M, Horiguchi G. , Tsukaya H. Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU[J]. Development, 2012, 139(4): 2436-2446[本文引用:1][25]Horiguchi G, Nakayama H, Ishikawa N. ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis[J]. Plant & Cell Physiology, 2011, 52(1): 112-124[本文引用:1][26]Long J A, Moan E I, Medford J I. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis[J]. Nature, 1996, 379(6560): 66-69[本文引用:1][27]Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, KNOTTED1[J]. Development, 2000, 127(14): 3161-3172[本文引用:1][28]叶曙光, 宰文珊, 熊自力, 张海利, 马彦如. 番茄KNOX基因家族鉴定及茄科作物KNOX基因进化关系分析[J]. 核农学报, 2017, 31(7): 1263-1271[本文引用:1][29]Guo M, Thomas J, Collins G, Timmermans M C. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis[J]. Plant Cell, 2008, 20(1): 48-58[本文引用:1][30]Kuijt S J H, Ouwerkerk P B F. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors[J]. Plant Physiology, 2014, 164(4): 1952-1966[本文引用:1][31]Osnato M, Stile M R, Wang Y M, Meynard D, Curiale S. Cross talk between the KNOX and Ethylene pathways is mediated by intron-binding transcription factors in barley[J]. Plant Physiology, 2010, 154(4): 1616-1632[本文引用:1][32]Gonzalez N, Beemster G T, Inzé D. David and Goliath: What can the tiny weed Arabidopsis teach us to improve biomass production in crops?[J]. Current Opinion in Plant Biology, 2009, 12(2): 157-164[本文引用:1][33]Vercruyssen L, Tognetti V B, Gonzalez N. GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity[J]. Plant Physiology, 2015, 167(3): 817-832[本文引用:2][34]Liu D, Song Y, Chen Z, Yu D. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis[J]. Physiologia Plantarum, 2009, 136(2): 223-236[本文引用:3][35]Rodriguez R E, Mecchia M A, Debernardi J M, Schommer C, Weigel D. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 1991, 137(1): 103-112[本文引用:2][36]Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L. )[J]. Gene, 2013, 530(1): 26-32[本文引用:1][37]Wang F, Qiu N, Ding Q, Li J J, Zhang Y H, Li HY, Gao J W. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 2014, 15(1): 1-12[本文引用:2][38]Choi D, Kim J H, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L. )[J]. Plant & Cell Physiology, 2004, 45(7): 897-904[本文引用:1][39]Wu L, Zhang D, Xue M, Qian J J, He Y, Wang SC. Overexpression of the maize GRF10an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. Journal of Integrative Plant Biology, 2014, 56(11): 1053-1063[本文引用:1][40]Pajoro A, Madrigal P, Muiño J M, Matus J T, Jin J, Mecchia M A, debernardi J M, Palatnik J F, Balazadeh S, Arif M, Maoiléidigh D, Wellmer F, Krajewski P, Riechmann J, Angenent G, Kaufmann K. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J]. Genome Biology, 2014, 15(3): R41[本文引用:2][41]Wynn A N, Rueschhoff E E, Franks R G. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana[J]. PLoS One, 2011, 6(6): e26231[本文引用:1][42]Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Chong K. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiology, 2014, 165(1): 160-174[本文引用:3][43]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799[本文引用:1][44]Sunkar R, Girke T, Jain P K, Zhu J K. Cloning and characterization of microRNAs from rice[J]. Plant Cell, 2005, 17(5): 1397-1411[本文引用:1][45]Hewezi T, Howe P, Maier T R, Baum T J. Arabidopsis small RNAs and their targets during cyst nematode parasitism[J]. Molecular Plant-Microbe Interactions, 2008, 21(12): 1622-1634[本文引用:2][46]Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species[J]. BMC Plant Biology, 2008, 8(1): 37-49[本文引用:1][47]Li Y, Zheng Y, Charles A, Zhang L, Saini A, Jagadeeswaran G, Axtell M, Zhang W X, Sunkar R. Transcriptome-wide identification of microRNA targets in rice[J]. Plant Journal, 2010, 62(5): 742-759[本文引用:1][48]Sun Q, Zhou D X. Rice jmjC domain-containing Gene JMJ706 encodes H3K9 demethylase required for floral organ development[J]. Proceedings of the National Academy of Sciences, 2008, 105(36): 13679-13684[本文引用:2][49]Pu C, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation[J]. Plant Journal for Cell & Molecular Biology, 2012, 70(6): 940-953[本文引用:1][50]Luo A, Liu L, Tang Z, Bai X, Cao S, Chu C. Down-regulation of OsGRF1 gene in rice Rhd1 mutant results in reduced heading date[J]. Journal of Integrative Plant Biology, 2005, 47(6): 745-752[本文引用:1][51]王开芳. 油菜BnGRF2和抗草甘膦EPSPs基因克隆及植物双价表达载体的构建[D]. 兰州: 甘肃农业大学, 2015[本文引用:2][52]Szakasits D, Heinen P K, Hofmann J, Wagner F, Kreil D P. The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots[J]. Plant Journal, 2009, 57(5): 771-784[本文引用:3][53]Debernardi J M, Rodriguez R E, Mecchia M A, Palatnik J F. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions[J]. PLoS Genetics, 2012, 8(1): e1002419[本文引用:1][54]Heidel A J, Clarke J D, Antonovics J, Dong X. Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana[J]. Genetics, 2004, 168(4): 2197-2206[本文引用:2][55]Sakuma Y, Maruyama K, Osakabe Y, Feng Q, Seki M. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell, 2006, 18(5): 1292-1309[本文引用:1][56]Hewezi T, Baum T J. Complex feedback regulations govern the expression of miRNA396 and its GRF target genes[J]. Plant Signaling & Behavior, 2012, 7(7): 749-751[本文引用:3][57]Chang C H, Young W B. Synchronization of developmental processes and defense signaling by growth regulating transcription factors[J]. PLoS One, 2014, 9(5): e98477[本文引用:2][58]Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhou R. Expression profile of miRNAs in populus cathayana L. and salix matsudana koidz under salt stress[J]. Molecular Biology Reports, 2012, 39(9): 8645-8654[本文引用:1][59]Casadevall R, Rodriguez R E, Debernardi J M. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves[J]. Plant Cell, 2013, 25(9): 3570-3583[本文引用:1][60]Casati P. Analysis of UV-B regulated miRNAs and their targets in maize leaves[J]. Plant Signaling & Behavior, 2013, 8(10): e26758[本文引用:2][61]Liu H H, Tian X, Li Y J, Wu C A, Zheng C C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. Rna-a Publication of the Rna Society, 2008, 14(5): 836-846[本文引用:1][62]Omidbakhshfard M A, Proost S, Fujikura U, Mueller-Roeber B. Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology[J]. Molecular Plant, 2015, 8(7): 998-1010[本文引用:1][63]Kim J H, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2004, 101(36): 13374-13379[本文引用:1]

相关知识

植物生长发育的分子调控.pptx
植物响应非生物胁迫的分子机制
分子植物卓越中心等发表关于植物响应热胁迫的分子机制的综述文章
木本植物低温胁迫生理及分子机制研究进展
调节植物响应光周期开花的分子机制阐明
CmMYB42转录因子调控菊花低氮胁迫的机理研究
Nature重磅IF 94.4!!最新综述植物激素对非生物胁迫响应的调节机制
细胞全能性转录因子调控植物组培再生的分子机制研究进展
Molecular Plant — 林尤舜研究组与合作者发表关于植物响应热胁迫的分子机制的综述文章
植物对涝渍胁迫的适应机制研究进展

网址: GRF转录因子对植物生长发育及胁迫响应调控的分子机制 https://www.huajiangbk.com/newsview1298647.html

所属分类:花卉
上一篇: 方精云研究团队提出植物养分平衡的
下一篇: (植物生物技术Pbj)Plant

推荐分享