导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'({{x}_{0}})=underset{Delta xto 0}{mathop{lim }},frac{f({{x}_{0}}+Delta x)-f({{x}_{0}})}{Delta x} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)
或者:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'({{x}_{0}})=underset{xto {{x}_{0}}}{mathop{lim }},frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}} f′(x0)=x→x0limx−x0f(x)−f(x0)
复合函数
例子1:
sin2x 求导 令 z = siny,y=2x, d z d x frac{dz}{dx} dxdz = d z d y frac{dz}{dy} dydz ⋅ cdot ⋅ d y d x frac{dy}{dx} dxdy=cosy ⋅ cdot ⋅ 2=2cos2x.