首页 分享 不同筋型小麦干物质和氮素积累对追施氮量的响应

不同筋型小麦干物质和氮素积累对追施氮量的响应

来源:花匠小妙招 时间:2024-12-23 21:38

摘要:

目的

研究不同筋型小麦干物质和氮素积累对追施氮量的响应,揭示其干物质积累特征,为资源高效利用提供科学参考。

方法

田间试验于2016—2017年在中国农业科学院作物科学研究所北京试验基地进行,供试品种为强筋小麦‘藁优2018’和‘师栾02-1’,中筋小麦‘中麦8号’和‘中麦175’,弱筋小麦‘扬麦22’和‘扬麦15’。在基施纯氮105 kg/hm2的基础上,设N 75、105和135 kg/hm2 3个追氮量处理,于拔节期追施。调查分析了小麦花前、花后干物质和氮素的积累与分配,产量及其构成因素。

结果

随着追氮量增加,开花期各筋型小麦干物质积累量均呈增加趋势,但各器官干物质分配比例的变化在不同筋型小麦间不完全相同,其中强筋小麦叶片占比升高,穗占比降低;中筋和弱筋小麦茎秆占比升高,叶片占比降低,穗则先升后降。提高追氮量对成熟期小麦干物质积累的影响主要表现为显著提高了颖壳+穗轴的比例,其他器官占比变化较小,但各器官干物质积累量总体呈增加趋势。随追氮量增加,成熟期各类型小麦营养器官和籽粒氮素积累量、营养器官氮素向籽粒中的转移量呈增加趋势,中筋小麦营养器官花前氮素转运率及贡献率显著降低,强筋和弱筋小麦营养器官花前氮素贡献率逐渐提高;中筋小麦花后氮素转运量显著提高,弱筋小麦花后氮素贡献率则显著降低。增加追氮量可显著提高弱筋小麦穗数、强筋小麦穗粒数、强筋和中筋小麦千粒重;不同筋型小麦产量虽有提高,但差异不显著。

结论

在本试验条件下,强筋小麦干物质积累与分配、氮素积累与转运以追施N 105 kg/hm2为宜,可以保证较高的穗粒数和千粒重,稳定产量。中筋小麦在追施N 135 kg/hm2时,可以显著提高干物质积累、氮素吸收转运及千粒重,保证较高产量。弱筋小麦在追施N 135 kg/hm2时,可以促进植株干物质积累、花前氮素积累与转运,提高对籽粒氮素的贡献率,通过提高成穗数实现产量提升。

Abstract:

Objectives

The response of dry matter and nitrogen accumulation of wheats having various gluten contents to nitrogen topdressing was studied.

Methods

The experiment was carried out in Beijing Experimental Base, Institute of Crop Sciences at the Chinese Academy of Agricultural Sciences between 2016 and 2017. The tested cultivars were high gluten wheats Gaoyou 2018 and Shiluan 02-1, medium gluten cultivars Zhongmai 8 and Zhongmai 175, and low gluten cultivars Yangmai 22 and Yangmai 15. The three topdressing N rates were 75 kg/hm2, 105 kg/hm2 and 135 kg/hm2 at jointing stage, on the basis of basal application of N 105 kg/hm2 and P 135 kg/hm2. The dry matter and N accumulation before and after anthesis, and the translocation and contribution rate of stored N were investigated. The yield and yield components were also determined.

Results

With the increase in topdressing N rate, the dry matter accumulation of different gluten wheats at flowering stage was increased, but its proportion varied in the vegetative parts. The leaf dry matter in high gluten wheat increased and that in ear decreased; the stem dry matter in medium and low gluten wheats increased, while those in leaves decreased. At maturing stage, increased topdressing N rate significantly increased the dry matter proportion in glume and rachis. The accumulation of N in vegetative organs and grains, whereas the transfer of N from vegetative organs to grains of all types of wheat were increased at maturity. The pre-anthesis N transport rate and contribution rate of vegetative organs of medium gluten wheat were decreased significantly, while the contribution rate of pre-anthesis nitrogen in vegetative organs of high and low gluten wheats were increased gradually. The amount of nitrogen transport after anthesis in medium gluten wheat was increased significantly, while the contribution rate of nitrogen after anthesis of low gluten wheat was decreased significantly. The spike number per spike of low gluten wheat, grain number of high gluten wheat and 1000-grain weight of high and medium gluten wheats were significantly increased by increasing rate of N topdressing. Although the yield of wheat with different gluten types were increased, the difference was not significant.

Conclusions

Under the experimental conditions, N 105 kg/hm2 topdressing improved dry matter accumulation and distribution, nitrogen accumulation and transportation of high gluten wheat, which attributed to higher grain number per spike and 1000-grain weight, and stabilize yield. N 135 kg/hm2 topdressing significantly improved dry matter and N accumulation and transportation, and yield in moderate gluten wheat. The application of N 135 kg/hm2 in low gluten wheat promoted dry matter accumulation, nitrogen accumulation and translocation before flowering, increased the contribution rate to grain nitrogen, and increased yield by increasing the number of spikes.

表  1   不同追氮量下开花期小麦不同部位的干物质积累量与分配比例

Table  1   Dry matter accumulation amount and distribution in different parts of wheat at flowering stage under different N topdressing rates

处理
Treatment茎秆 Stem叶片 Leaf穗 Ear总干物质
Total dry matter
(kg/hm2)积累
Accumulation
(kg/hm2)分配
Distribution
(%)积累
Accumulation
(kg/hm2)分配
Distribution
(%)积累
Accumulation
(kg/hm2)分配
Distribution
(%) 强筋
Strong glutenN759037 b56.4 a3155 cd19.8 d3809 a23.8 a16001 cN1059525 ab56.6 a3785 b22.7 c3512 b20.7 c16821 bN1359762 a56.1 ab4038 a23.4 c3574 b20.4 c17374 a中筋
Medium glutenN756037 d51.1 c3265 c27.6 a2519 e21.3 c11822 fN1056112 d51.4 c3023 d25.5 b2764 d23.1 a11899 fN1357517 c54.0 b3604 b25.8 b2809 d20.1 c13929 d弱筋
Weak glutenN753650 f51.3 c1932 f27.2 ab1525 g21.5 bc7107 hN1054604 e49.6 c2467 e26.6 ab2196 f23.8 a9268 gN1357185 c55.0 ab2922 d22.3 c2985 c22.7 ab13092 e平均值
Average强筋
Strong gluten9441 a56.4 a3659 a22.0 c3632 a21.7 b16732 a中筋
Medium gluten6556 b56.2 b3297 b26.3 a2697 b21.5 b12550 b弱筋
Weak gluten5147 b52.0 b2440 c25.4 b2235 b22.7 a9822 cN756241 c52.9 b2784 c24.9 a2618 c22.2 a11643 cN1056747 b52.5 b3092 b24.9 a2824 b22.6 a12663 bN1358155 a55.1 a3521 a23.8 b3122 a21.1 b14799 a 注: 同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Values followed by different small letters in a column indicate significant difference among treatments (P<0.05).

表  2   不同追氮量下成熟期小麦不同部位的干物质积累量与分配比例

Table  2   Dry matter accumulation amount and distribution in different parts of wheat at maturity stage under different N topdressing rates

处理
Treatment茎秆 Stem叶片 Leaf颖壳+穗轴 Glume+cob 籽粒 Grain总干物质
Total dry matter
(kg/hm2)积累
Accumulation
(kg/hm2)分配
Distribution
(%)积累
Accumulation
(kg/hm2)分配
Distribution
(%)积累
Accumulation
(kg/hm2)分配
Distribution
(%) 积累
Accumulation
(kg/hm2) 分配
Distribution
(%) 强筋
Strong glutenN758009 b37.8 a1394 ab6.6 bc1892 d8.9 d9929 b46.8 a21224 bN1058234 a36.8 ab1319 ab5.8 c2502 c11.0 c10475 a46.5 a22530 aN1358183 a36.3 ab1555 a6.8 abc2427 c10.7 c10804 a47.0 a22969 a中筋
Medium glutenN756795 d35.8 b1411 ab7.4 ab1960 d10.3 c8523 c45.6 ab18689 cN1056775 d35.9 b1482 a7.9 ab2062 d11.0 c8834 c46.1 ab19153 cN1357071 c34.3 c1573 a7.3 ab3381 a15.7 a9576 b44.3 b21601 b弱筋
Weak glutenN754855 g36.9 ab1054 c8.1 a1850 d14.1 b5352 f40.8 c13111 fN1055380 f36.2 ab1188 bc8.0 a2333 c15.6 a5985 e40.2 c14886 eN1356101 e35.7 bc1375 ab8.0 a2809 b16.1 a6952 d40.4 c17237 d平均值
Average强筋
Strong gluten8142 a37.0 a1423 a6.4 b2273 b10.2 c10403 a46.8 a22241 a中筋
Medium gluten6881 b35.4 b1489 a7.5 a2468 a12.3 b8978 b45.3 b19816 b弱筋
Weak gluten5445 c36.3 a1206 b8.0 a2331 b15.3 a6097 c40.5 c15079 cN756553 c36.8 a1286 b7.3 a1901 c11.1 c7935 c44.4 a17675 cN1056796 b36.3 a1330 b7.2 a2299 b12.5 b8432 b44.3 a18857 bN1357119 a35.4 b1501 a7.4 a2872 a14.2 a9111 a43.9 a20603 a 注:同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Values followed by different small letters in a column indicate significant difference among treatments (P<0.05).

表  3   不同追施氮量下不同筋型小麦营养器官氮素积累量、转运率和对籽粒的贡献率

Table  3   Accumulation, translocation, and contribution to yield of stored N in vegetative organs of wheat as affected by nitrogen topdressing rate and cultivar

处理

Treatment

氮素积累量 NAA (kg/hm2)花前 Before anthesis花后 After anthesis开花期
Anthesis成熟期
Maturity籽粒
GrainNTA
(kg/hm2)NTE
(%)NCR
(%)NTA
(kg/hm2)NCR
(%) 强筋 Strong glutenN75246.5 c87.0 c269.5 c159.5 c64.7 a59.2 bc110.0 ab40.8 abN105290.6 b100.9 b291.4 b189.7 b65.3 a65.1 b101.7 abc34.9 bN135303.5 a103.7 b309.9 a199.8 a65.8 a64.5 b110.1 ab35.5 b中筋 Medium glutenN75199.2 d70.0 e215.3 e129.2 e64.9 a60.0 bc86.1 c40.0 abN105200.1 d80.4 d213.7 e119.7 f59.8 b56.1 c94.0 bc43.9 aN135246.2 c106.4 b254.6 d139.8 d56.8 c55.2 c114.8 a44.8 a弱筋 Weak glutenN75129.8 f61.9 f120.7 h68.0 h52.4 d56.4 c52.8 d43.6 aN105175.6 e85.9 c146.8 g89.6 g51.1 d61.1 bc57.1 d38.9 abN135247.1 c116.9 a182.2 f130.1 e52.7 d71.5 a52.0 d28.5 c平均值 Average强筋
Strong gluten280.2 a97.2 a290.2 a183.0 a65.3 a62.9 a107.3 a37.1 b中筋
Medium gluten215.2 c85.6 b227.9 b129.6 b60.5 b57.1 b98.3 b42.9 a弱筋
Weak gluten184.2 b88.3 b149.9 c95.9 c52.0 c63.0 a54.0 c37.0 bN75191.9 c73.0 c201.8 c118.9 c60.6 a58.5 b82.9 a41.5 aN105222.1 b89.1 b217.3 b133.0 b58.7 b60.8 ab84.3 a39.2 abN135265.6 a109.0 a248.9 a156.6 a58.4 b63.7 a92.3 a36.3 b 注:NTA—贮存氮素转运量;NTE—贮存氮素转运率;NCR—贮存氮素贡献率。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: NAA—Nitrogen accumulation amount; NTA—Translocated amount of stored N; NTE—Translocated efficiency of stored N; NCR—Contribution rate to grain of the stored N. Values followed by different small letters in a column indicate significant difference among treatments (P<0.05).

表  4   不同追氮量下小麦产量及其构成因素

Table  4   Effects of different treatments on wheat yield and its components under different N topdressing rates

处理
Treatment籽粒产量
Grain yield
(kg/hm2)穗数
Ears
(×104/hm2)穗粒数
Grain number
per spike千粒重
1000-grain weight
(g) 强筋 Strong glutenN757758 a697 a29.3 c38.5 dN1058051 a723 a31.3 bc39.2 cdN1358151 a723 a32.7 b40.3 b中筋 Medium glutenN757755 a620 b31.8 bc40.0 bcN1058048 a610 b32.6 b40.6 bN1358310 a627 b33.7 b41.8 a弱筋 Weak glutenN756559 b438 e37.6 a40.0 bcN1056816 b469 d40.0 a40.5 bN1356968 b510 c40.5 a40.9 b平均值 Average强筋
Strong gluten7986 a714 a31.1 b39.3 b中筋
Medium gluten8038 a619 b32.7 b40.8 a弱筋
Weak gluten6781 b472 c39.4 a40.5 aN757357 b585 c32.9 b39.5 cN1057638 ab601 b34.7 a40.1 bN1357809 a620 a35.6 a41.0 a 注:同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Values followed by different small letters in a column indicate significant difference among treatments (P<0.05). [1] 赵广才, 万富世, 常旭虹, 等. 不同试点氮肥水平对强筋小麦加工品质性状及其稳定性的影响[J]. 作物学报, 2006, 32(10): 1498–1502. Zhao G C, Wan F S, Chang X H, et al. Effects of nitrogen levels and experimental sites on processing quality characteristics and stability in strong gluten wheat[J]. Acta Agronomica Sinica, 2006, 32(10): 1498–1502. DOI: 10.3321/j.issn:0496-3490.2006.10.012

Zhao G C, Wan F S, Chang X H, et al. Effects of nitrogen levels and experimental sites on processing quality characteristics and stability in strong gluten wheat [J]. Acta Agronomica Sinica, 2006, 32(10): 1498-1502. DOI: 10.3321/j.issn:0496-3490.2006.10.012

[2] 张宏, 周建斌, 刘瑞, 等. 不同栽培模式及施氮对半旱地冬小麦/夏玉米氮素累积、分配及氮肥利用率的影响[J]. 植物营养与肥料学报, 2011, 17(1): 1–8. Zhang H, Zhou J B, Liu R, et al. Effects of different cultivation patterns and nitrogen fertilizer on accumulation, distribution and use efficiency of nitrogen in winter wheat/summer maize rotation system on semi-dry land farming[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 1–8. DOI: 10.11674/zwyf.2011.0101

Zhang H, Zhou J B, Liu R, et al. Effects of different cultivation patterns and nitrogen fertilizer on accumulation, distribution and use efficiency of nitrogen in winter wheat/summer maize rotation system on semi-dry land farming [J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 1-8. DOI: 10.11674/zwyf.2011.0101

[3]

Hébert Y, Guingo E, Loudet O. The response of root/shoot partitioning and root morphology to light reduction in maize genotypes[J]. Crop Science, 2001, 41(2): 363–371.

[4]

Shangguan Z P, Shao M A, Ren S J, et al. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat[J]. Botanical Bulletin of Academia Sinica, 2004, 45(1): 49–54.

[5] 于振文, 梁晓芳, 李延奇, 等. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响[J]. 应用生态学报, 2007, 18(1): 69–74. Yu Z W, Liang X F, Li Y Q, et al. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 69–74. DOI: 10.3321/j.issn:1001-9332.2007.01.012

Yu Z W, Liang X F, Li Y Q, et al. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat [J]. Chinese Journal of Applied Ecology, 2007, (1): 69-74. DOI: 10.3321/j.issn:1001-9332.2007.01.012

[6] 赵俊晔, 于振文. 高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J]. 作物学报, 2006, 32(4): 484–490. Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition[J]. Acta Agronomic Sinica, 2006, 32(4): 484–490. DOI: 10.3321/j.issn:0496-3490.2006.04.003

Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition [J]. Acta Agronomic Sinica, 2006, (4): 484-490. DOI: 10.3321/j.issn:0496-3490.2006.04.003

[7] 杨丽娟, 李晓航, 盛坤, 等. 灌水模式对不同小麦品种干物质积累、分配和产量的影响[J]. 中国农学通报, 2017, 33(5): 10–16. Yang L J, Li X H, Sheng K, et al. Effects of irrigation mode on dry matter accumulation and allocation and yield of wheat varieties[J]. Chinese Agricultural Science Bulletin, 2017, 33(5): 10–16. DOI: 10.11924/j.issn.1000-6850.casb16070021

Yang L J, Li X H, Sheng K, et al. Effects of irrigation mode on dry matter accumulation and allocation and yield of wheat varieties [J]. Chinese Agricultural Science Bulletin, 2017, 33(5): 10-16. DOI: 10.11924/j.issn.1000-6850.casb16070021

[8] 郭栋, 党廷辉, 戚龙海. 黄土旱塬不同氮肥用量下冬小麦干物质累积和氮素吸收利用过程研究[J]. 水土保持学报, 2008, 22(5): 138–141. Guo D, Dang T H, Qi L H. Process study of dry matter accumulation and nitrogen absorption use of winter wheat under different N-fertilizer rates on dry highland of Loess Plateau[J]. Journal of Soil and Water Conservation, 2008, 22(5): 138–141. DOI: 10.3321/j.issn:1009-2242.2008.05.031

Guo D, Dang T H, Qi L H. Process study of dry matter accumulation and nitrogen absorption use of winter wheat under different N-fertilizer rates on dry highland of Loess Plateau [J]. Journal of Soil and Water Conservation, 2008, (5): 138-141. DOI: 10.3321/j.issn:1009-2242.2008.05.031

[9] 牛巧龙, 曹高燚, 万鹏, 等. 氮肥施用量对强筋和弱筋小麦干物质积累及灌浆速率的影响[J]. 天津农学院学报, 2017, 24(3): 1–5. Niu Q L, Cao G Y, Wan P, et al. Effects of nitrogen application on dry matter accumulation and grain filling rate of strong gluten and weak gluten wheat[J]. Journal of Tianjin Agricultural University, 2017, 24(3): 1–5. DOI: 10.3969/j.issn.1008-5394.2017.03.001

Niu Q L, Cao G Y, Wan P, et al. Effects of nitrogen application on dry matter accumulation and grain filling rate of strong gluten and weak gluten wheat [J]. Journal of Tianjin Agricultural University, 2017, 24(3): 1-5. DOI: 10.3969/j.issn.1008-5394.2017.03.001

[10] 郭明明, 赵广才, 郭文善, 等. 追氮时期和施钾量对小麦氮素吸收运转的调控[J]. 植物营养与肥料学报, 2016, 22(3): 590–597. Guo M M, Zhao G C, Guo W S, et al. Regulation of nitrogen topdressing stage and potassium fertilizer rate on absorption and translocation of nitrogen by wheat[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 590–597.

Guo M M, Zhao G C, Guo W S, et al. Regulation of nitrogen topdressing stage and potassium fertilizer rate on absorption and translocation of nitrogen by wheat [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(03): 590-597.

[11] 马冬云, 郭天财, 岳艳军, 等. 不同时期追氮对冬小麦植株氮素积累及转运特性的影响[J]. 植物营养与肥料学报, 2009, 15(2): 262–268. Ma D Y, Guo T C, Yue Y J, et al. Effects of nitrogen application at different developmental stages on nitrogen accumulation and translocation in winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(2): 262–268. DOI: 10.3321/j.issn:1008-505X.2009.02.003

Ma D Y, Guo T C, Yue Y J, et al. Effects of nitrogen application at different developmental stages on nitrogen accumulation and translocation in winter wheat [J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(2): 262-268. DOI: 10.3321/j.issn:1008-505X.2009.02.003

[12] 张法全, 王小燕, 于振文, 等. 公顷产10000 kg小麦氮素和干物质积累与分配特性[J]. 作物学报, 2009, 35(6): 1086–1096. Zhang F Q, Wang X Y, Yu Z W, et al. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare[J]. Acta Agronomica Sinica, 2009, 35(6): 1086–1096.

Zhang F Q, Wang X Y, Yu Z W, et al. Characteristics of accumulation and distribution of nitrogen and fry matter in wheat at yield level of ten thousand kilograms per hectare [J]. Acta Agronomica Sinica, 2009, (5): 1086-1096.

[13] 王美, 赵广才, 石书兵, 等. 施氮及花后土壤相对含水量对黑粒小麦灌浆期氮素吸收转运及分配的影响[J]. 中国生态农业学报, 2016, 24(7): 864–873. Wang M, Zhao G C, Shi S B, et al. Effect of nitrogen fertilization and soil relative water content after anthesis on nitrogen absorption and translocation of black wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(7): 864–873.

Wang M, Zhao G C, Shi S B, et al. Effect of nitrogen fertilization and soil relative water content after anthesis on nitrogen absorption and translocation of black wheat [J]. Chinese Journal of Eco-Agriculture, 2016, 24(7): 864-873.

[14] 段文学, 于振文, 张永丽, 等. 施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响[J]. 中国农业科学, 2012, 45(15): 3040–3048. Duan W X, Yu Z W, Zhang Y L, et al. Effects of nitrogen fertilizer application rate on nitrogen absorption, translocation and nitrate nitrogen content in soil of dryland wheat[J]. Scientia Agricultura Sinica, 2012, 45(15): 3040–3048.

Duan W X, Yu Z W, Zhang Y L, et al. Effects of nitrogen fertilizer application rate on nitrogen absorption, translocation and nitrate nitrogen content in soil of dryland wheat [J]. Scientia Agricultura Sinica, 2012, 45(15): 3040-3048.

[15] 吴培金, 闫素辉, 张从宇, 等. 应15N分析施氮量对弱筋小麦氮素吸收利用与产量的影响[J]. 中国土壤与肥料, 2019, (4): 121–126. Wu P J, Yan S H, Zhang C Y, et al. Effects of nitrogen fertilizer application rate on nitrogen uptake, utilization and yield of weak gluten wheat using 15N trace technique[J]. Soils and Fertilizers Sciences in China, 2019, (4): 121–126. DOI: 10.11838/sfsc.1673-6257.18351

Wu P J, Yan S H, Zhang C Y, et al. Effects of nitrogen fertilizer application rate on nitrogen uptake, utilization and yield of weak gluten wheat using 15N trace technique [J]. Soils and Fertilizers Sciences in China, 2019, (4): 121-126. DOI: 10.11838/sfsc.1673-6257.18351

[16] 姚战军, 杨玉锋, 陈若英, 等. 氮肥运筹对强筋小麦旗叶生理性状及产量的影响[J]. 中国农学通报, 2011, 27(15): 186–188. Yao Z J, Yang Y F, Chen R Y, et al. Effects of nitrogen application on physiological traits of flag leaves and grain yield of strong gluten wheat[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 186–188.

Yao Z J, Yang Y F, Chen R Y, et al. Effects of nitrogen application on physiological traits of flag leaves and grain yield of strong gluten wheat [J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 186-188.

[17] 曹燕燕, 李雷雷, 于蕾, 等. 播期播量对小麦新品种漯麦 163 产量及其构成因素的影响[J]. 陕西农业科学, 2021, 67(10): 98–102. Cao Y Y, Li L L, Yu L, et al. Effect of sowing date and amount on yield and components of new wheat variety ‘Luomai 163’[J]. Shaanxi Journal of Agricultural Sciences, 2021, 67(10): 98–102. DOI: 10.3969/j.issn.0488-5368.2021.10.020

Cao Y Y, Li L L, Yu L, et al. Effect of sowing date and amount on yield and components of new wheat variety ‘Luomai 163’ [J]. Shaanxi Journal of Agricultural Sciences, 2021, 67(10): 98-102. DOI: 10.3969/j.issn.0488-5368.2021.10.020

[18] 王小明, 王振峰, 张新刚, 等. 不同施氮量对高产小麦茎蘖消长、花后干物质积累和产量的影响[J]. 西北农业学报, 2013, 22(5): 1–8. Wang X M, Wang Z F, Zhang X G, et al. Effects of nitrogen application rate on tillering, post-anthesis dry matter accumulation and yield in high-yielding wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(5): 1–8. DOI: 10.7606/j.issn.1004-1389.2013.05.001

Wang X M, Wang Z F, Zhang X G, et al. Effects of nitrogen application on rate on tillering, post-anthesis dry matter accumulation and yield in high-yielding wheat [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(5): 1-8. DOI: 10.7606/j.issn.1004-1389.2013.05.001

[19] 李廷亮, 谢英荷, 洪坚平, 等. 施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影[J]. 作物学报, 2013, 39(4): 704–711. Li T L, Xie Y H, Hong J P, et al. Effects of nitrogen application rate on photosynthetic characteristics, yield, and nitrogen utilization in rainfed winter wheat in southern Shanxi[J]. Acta Agronomica Sinica, 2013, 39(4): 704–711.

Li T L, Xie Y H, Hong J P, et al. Effects of nitrogen application rate on photosynthetic characteristics, yield, and nitrogen utilization in rainfed winter wheat in southern Shanxi [J]. Acta Agronomica Sinica, 2013, 39(4): 704-711.

[20] 张定一, 党建友, 王姣爱, 等. 施氮量对不同品质类型小麦产量、品质和旗叶光合作用的调节效应[J]. 植物营养与肥料学报, 2007, 13(4): 535–542. Zhang D Y, Dang J Y, Wang J A, et al. Regulative effect of nitrogen fertilization on grain yield, quality and photosynthesis of flag leaves in different wheat varieties[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(4): 535–542. DOI: 10.3321/j.issn:1008-505X.2007.04.001

Zhang D Y, Dang J Y, Wang J A, et al. Regulative effect of nitrogen fertilization on grain yield, quality and photosynthesis of flag leaves in different wheat varieties [J]. Journal of Plant Nutrition and Fertilizers, 2007, (4): 535-542. DOI: 10.3321/j.issn:1008-505X.2007.04.001

[21] 马少康, 赵广才, 常旭虹, 等. 不同水、氮处理对济麦20产量和蛋白质品质的影响[J]. 核农学报, 2010, 24(4): 815–820. Ma S K, Zhao G C, Chang X H, et al. Effects of water and nitrogen treatment on yield and protein quality in strong gluten wheat Jimai 20[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(4): 815–820. DOI: 10.11869/hnxb.2010.04.0815

Ma S K, Zhao G C, Chang X H, et al. Effects of water and nitrogen treatment on yield and protein quality in strong gluten wheat Jimai20 [J]. Journal of Nuclear Agricultural Sciences, 2010, 24(4): 815-820. DOI: 10.11869/hnxb.2010.04.0815

[22] 吴永成, 杨世民, 汤永禄, 等. 氮肥施用量对攀西地区不同品质类型小麦的产量形成影响研究[J]. 四川农业大学学报, 2007, 25(1): 19–23. Wu Y C, Yang S M, Tang Y L, et al. Study on the influence of nitrogen fertilizer on yield formation of different-quality wheat in Panxi region[J]. Journal of Sichuan Agricultural University, 2007, 25(1): 19–23. DOI: 10.3969/j.issn.1000-2650.2007.01.004

Wu Y C, Yang S M, Tang Y L, et al. Study on the influence of nitrogen fertilizer on yield formation of different-quality wheat in Panxi region [J]. Journal of Sichuan Agricultural University, 2007, (1): 19-23. DOI: 10.3969/j.issn.1000-2650.2007.01.004

[23] 王志勇, 白由路, 王磊, 等. 氮素营养水平对冬小麦产量及生物学性状的影响[J]. 中国土壤与肥料, 2011, (4): 22–25. Wang Z Y, Bai Y L, Wang L, et al. Effects of nitrogen rates on grain yield and biological characteristics of winter wheat[J]. Soils and Fertilizers Sciences in China, 2011, (4): 22–25. DOI: 10.3969/j.issn.1673-6257.2011.04.006

Wang Z Y, Bai Y L, Wang L, et al. Effects of nitrogen rates on grain yield and biological characteristics of winter wheat [J]. Soils and Fertilizers Sciences in China, 2011, (4): 22-25. DOI: 10.3969/j.issn.1673-6257.2011.04.006

[24] 王玲玲, 吴文革, 李瑞, 等. 施氮量对弱筋小麦籽粒品质与氮素利用的影响[J]. 浙江农业学报, 2021, 33(5): 777–784. Wang L L, Wu W G, Li R, et al. Effects of nitrogen rate on grain quality and nitrogen utilization of weak gluten wheat[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 777–784. DOI: 10.3969/j.issn.1004-1524.2021.05.01

Wang L L, Wu W G, Li R, et al. Effects of nitrogen rate on grain quality and nitrogen utilization of weak gluten wheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 777-784. DOI: 10.3969/j.issn.1004-1524.2021.05.01

相关知识

滴灌和施肥频率对强筋小麦产量及水分和氮素利用效率的影响
灌溉频率和施氮量对滴灌春小麦干物质积累及产量的影响
小麦慢条锈抗性类型品种抗病性及其花后干物质积累研究
施氮对不同肥力土壤小麦氮营养和产量的影响
微喷水肥一体化氮肥管理对冬小麦产量、品质、氮素积累和利用的影响
微喷补灌水肥一体化管理对小麦产量和水氮利用效率调节的生理基础
施氮量和花后土壤含水量对强筋小麦籽粒淀粉合成及品质的影响
花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响
氮磷钾配施对小麦植株养分吸收利用和产量的影响
施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响

网址: 不同筋型小麦干物质和氮素积累对追施氮量的响应 https://www.huajiangbk.com/newsview1254996.html

所属分类:花卉
上一篇: 棉花高产和磷高效的磷肥基施追施配
下一篇: 【养花记】地栽绣球花怎么种植?

推荐分享