首页 分享 Environmental risks of antibiotics in soil and the related bioremediation technologies

Environmental risks of antibiotics in soil and the related bioremediation technologies

来源:花匠小妙招 时间:2024-09-14 22:26
[1]

Zhang QQ, Ying GG, Pan CG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 2015, 49(11): 6772-6782. DOI:10.1021/acs.est.5b00729

[2]

Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol, 2017, 15(7): 422-434. DOI:10.1038/nrmicro.2017.28

[3]

Blackwell PA, Kay P, Boxall AB. The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere, 2007, 67(2): 292-299. DOI:10.1016/j.chemosphere.2006.09.095

[4] [5]

Matthiessen L, Bergström R, Dustdar S, et al. Increased momentum in antimicrobial resistance research. Lancet, 2016, 388(10047): 865.

[6]

Lyu J, Yang LS, Zhang L, et al. Antibiotics in soil and water in China–a systematic review and source analysis. Environ Pollut, 2020, 266: 115147. DOI:10.1016/j.envpol.2020.115147

[7]

Knapp CW, Dolfing J, Ehlert PAI, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol, 2010, 44(2): 580-587. DOI:10.1021/es901221x

[8]

Tasho RP, Cho JY. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci Total Environ, 2016, 563/564: 366-376. DOI:10.1016/j.scitotenv.2016.04.140

[9] [10]

Sun JT, Pan LL, Tsang DCW, et al. Organic contamination and remediation in the agricultural soils of China: a critical review. Sci Total Environ, 2018, 615: 724-740. DOI:10.1016/j.scitotenv.2017.09.271

[11]

Klein E, Boeckel T, Martinez E, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci, 2018, 115: E3463-E3470. DOI:10.1073/pnas.1717295115

[12]

Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci, 2015, 112(18): 5649. DOI:10.1073/pnas.1503141112

[13]

Richardson BJ, Lam PK, Martin M. Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Mar Pollut Bull, 2005, 50(9): 913-920. DOI:10.1016/j.marpolbul.2005.06.034

[14]

Xie WY, Shen Q, Zhao FJ. Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur J Soil Sci, 2018, 69(1): 181-195. DOI:10.1111/ejss.12494

[15]

Du LF, Liu WK. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: a review. Agron Sustain Dev, 2012, 32(2): 309-327. DOI:10.1007/s13593-011-0062-9

[16]

Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut, 2014, 187: 193-201. DOI:10.1016/j.envpol.2014.01.015

[17]

Kang DH, Gupta S, Rosen C, et al. Antibiotic uptake by vegetable crops from manure-applied soils. J Agric Food Chem, 2013, 61(42): 9992-10001. DOI:10.1021/jf404045m

[18]

Joy SR, Bartelt-Hunt SL, Snow DD, et al. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry. Environ Sci Technol, 2013, 47(21): 12081-12088. DOI:10.1021/es4026358

[19]

Watanabe N, Bergamaschi BA, Loftin KA, et al. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ Sci Technol, 2010, 44(17): 6591-6600. DOI:10.1021/es100834s

[20]

Tso J, Dutta S, Inamdar S, et al. Simultaneous analysis of free and conjugated estrogens, sulfonamides, and tetracyclines in runoff water and soils using solid-phase extraction and liquid chromatography—tandem mass spectrometry. J Agric Food Chem, 2011, 59(6): 2213-2222. DOI:10.1021/jf104355x

[21]

Tamtam F, van Oort F, Le Bot B, et al. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci Total Environ, 2011, 409(3): 540-547. DOI:10.1016/j.scitotenv.2010.10.033

[22]

Archundia D, Duwig C, Lehembre F, et al. Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: major transformation products and occurrence of resistance genes. Sci Total Environ, 2017, 576: 671-682. DOI:10.1016/j.scitotenv.2016.10.129

[23]

Bourdat-Deschamps M, Ferhi S, Bernet N, et al. Fate and impacts of pharmaceuticals and personal care products after repeated applications of organic waste products in long-term field experiments. Sci Total Environ, 2017, 607/608: 271-280. DOI:10.1016/j.scitotenv.2017.06.240

[24]

De Liguoro M, Cibin V, Capolongo F, et al. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere, 2003, 52(1): 203-212. DOI:10.1016/S0045-6535(03)00284-4

[25]

Laconi A, Mughini-Gras L, Tolosi R, et al. Microbial community composition and antimicrobial resistance in agricultural soils fertilized with livestock manure from conventional farming in Northern Italy. Sci Total Environ, 2021, 760: 143404. DOI:10.1016/j.scitotenv.2020.143404

[26]

Hamscher G, Sczesny S, Höper H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem, 2002, 74(7): 1509-1518. DOI:10.1021/ac015588m

[27]

Hamscher G, Pawelzick HT, Höper H, et al. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem, 2005, 24(4): 861-868. DOI:10.1897/04-182R.1

[28]

Spielmeyer A, Petri MS, Höper H, et al. Long-term monitoring of sulfonamides and tetracyclines in manure amended soils and leachate samples-a follow-up study. Heliyon, 2020, 6(8): e04656. DOI:10.1016/j.heliyon.2020.e04656

[29]

Parente CET, Azeredo A, Vollú RE, et al. Fluoroquinolones in agricultural soils: multi-temporal variation and risks in Rio de Janeiro upland region. Chemosphere, 2019, 219: 409-417. DOI:10.1016/j.chemosphere.2018.11.184

[30]

Leal RM, Figueira RF, Tornisielo VL, et al. Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Sci Total Environ, 2012, 432: 344-349. DOI:10.1016/j.scitotenv.2012.06.002

[31]

Karcı A, Balcıoğlu IA. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ, 2009, 407(16): 4652-4664. DOI:10.1016/j.scitotenv.2009.04.047

[32]

Scaria J, Anupama KV, Nidheesh PV. Tetracyclines in the environment: an overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Sci Total Environ, 2021, 771: 145291. DOI:10.1016/j.scitotenv.2021.145291

[33]

Rutgersson C, Fick J, Marathe N, et al. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ Sci Technol, 2014, 48(14): 7825-7832. DOI:10.1021/es501452a

[34]

马静静. 内蒙古牧区土壤中兽药青霉素的残留及吸附研究[D]. 呼和浩特: 内蒙古大学, 2010.
Ma JJ. Study on veterinary penicillin residues and adsorption in soil of Inner Mongolia pastoral[D]. Hohhot: Inner Mongolia University, 2010 (in Chinese).

[35]

Gao L, Shi Y, Li W, et al. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China. Environ Sci Pollut Res Int, 2015, 22(15): 11360-11371. DOI:10.1007/s11356-015-4230-3

[36]

Li C, Chen J, Wang J, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci Total Environ, 2015, 521/522: 101-107. DOI:10.1016/j.scitotenv.2015.03.070

[37]

An J, Chen HW, Wei SH, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ Earth Sci, 2015, 74(6): 5077-5086. DOI:10.1007/s12665-015-4528-y

[38]

Hu XG, Zhou QX, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China. Environ Pollut, 2010, 158(9): 2992-2998. DOI:10.1016/j.envpol.2010.05.023

[39] [40]

Jechalke S, Heuer H, Siemens J, et al. Fate and effects of veterinary antibiotics in soil. Trends Microbiol, 2014, 22(9): 536-545. DOI:10.1016/j.tim.2014.05.005

[41]

Braschi I, Blasioli S, Fellet C, et al. Persistence and degradation of new β-lactam antibiotics in the soil and water environment. Chemosphere, 2013, 93(1): 152-159. DOI:10.1016/j.chemosphere.2013.05.016

[42]

Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol, 2004, 38(15): 4097-4105. DOI:10.1021/es034856q

[43]

Kurwadkar ST, Adams CD, Meyer MT, et al. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J Agric Food Chem, 2007, 55(4): 1370-1376. DOI:10.1021/jf060612o

[44]

Li YF, Zhu GB, Ng WJ, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ, 2014, 468/469: 908-932. DOI:10.1016/j.scitotenv.2013.09.018

[45]

Wu X, Ernst F, Conkle JL, et al. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int, 2013, 60: 15-22. DOI:10.1016/j.envint.2013.07.015

[46]

Boxall AB, Johnson P, Smith EJ, et al. Uptake of veterinary medicines from soils into plants. J Agric Food Chem, 2006, 54(6): 2288-2297. DOI:10.1021/jf053041t

[47]

Chander Y, Kumar K, Goyal SM, et al. Antibacterial activity of soil-bound antibiotics. J Environ Qual, 2005, 34(6): 1952-1957. DOI:10.2134/jeq2005.0017

[48]

鲍艳宇, 周启星, 谢秀杰. 四环素类抗生素对小麦种子芽与根伸长的影响. 中国环境科学, 2008, 28(6): 566-570.
Bao YY, Zhou QX, Xie XJ. Influence of tetracycline kind antibiotics on the control of wheat germination and root elongation. China Environ Sci, 2008, 28(6): 566-570 (in Chinese). DOI:10.3321/j.issn:1000-6923.2008.06.018

[49]

Liu F, Ying GG, Tao R, et al. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut, 2009, 157(5): 1636-1642. DOI:10.1016/j.envpol.2008.12.021

[50]

Mukhtar A, Manzoor M, Gul I, et al. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments. Chemosphere, 2020, 258: 127353. DOI:10.1016/j.chemosphere.2020.127353

[51]

Chen JF, Xu HL, Sun YB, et al. Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ, 2016, 543: 197-205. DOI:10.1016/j.scitotenv.2015.11.015

[52]

Pan M, Chu LM. Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ, 2017, 599/600: 500-512. DOI:10.1016/j.scitotenv.2017.04.214

[53]

Rocha DC, Da Silva Rocha C, Tavares DS, et al. Veterinary antibiotics and plant physiology: an overview. Sci Total Environ, 2021, 767: 144902. DOI:10.1016/j.scitotenv.2020.144902

[54]

Minden V, Deloy A, Volkert AM, et al. Antibiotics impact plant traits, even at small concentrations. AoB PLANTS, 2017, 9(2): plx010.

[55]

Opriş O, Copaciu F, Loredana Soran M, et al. Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf, 2013, 87: 70-79. DOI:10.1016/j.ecoenv.2012.09.019

[56]

Moullan N, Mouchiroud L, Wang X, et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep, 2015, 10(10): 1681-1691. DOI:10.1016/j.celrep.2015.02.034

[57]

Riaz L, Mahmood T, Coyne MS, et al. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere, 2017, 177: 250-257. DOI:10.1016/j.chemosphere.2017.03.033

[58]

Liu X, Lv Y, Xu K, et al. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. Chemosphere, 2018, 201: 137-143. DOI:10.1016/j.chemosphere.2018.02.178

[59]

Bao YY, Li YX, Pan CR. Effects of the removal of soil extractable oxytetracycline fractions on its bioaccumulation in earthworm and horsebean. Water Air Soil Pollut, 2018, 229(3): 1-12.

[60]

Žižek S, Zidar P. Toxicity of the ionophore antibiotic lasalocid to soil-dwelling invertebrates: avoidance tests in comparison to classic sublethal tests. Chemosphere, 2013, 92(5): 570-575. DOI:10.1016/j.chemosphere.2013.04.007

[61]

Menezes-Oliveira V, Loureiro S, Amorim MJB, et al. Hazard assessment of the veterinary pharmaceuticals monensin and nicarbazin using a soil test battery. Environ Toxicol Chem, 2018, 37(12): 3145-3153. DOI:10.1002/etc.4265

[62]

Blouin M, Hodson ME, Delgado EA, et al. A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci, 2013, 64(2): 161-182. DOI:10.1111/ejss.12025

[63]

Li PY, Wu YZ, Wang YL, et al. Soil behaviour of the veterinary drugs lincomycin, monensin, and roxarsone and their toxicity on environmental organisms. Molecules, 2019, 24(24): E4465. DOI:10.3390/molecules24244465

[64]

Litskas VD, Karamanlis XN, Prousali SP, et al. The xenobiotic doxycycline affects nitrogen transformations in soil and impacts earthworms and cultivated plants. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2019, 54(14): 1441-1447. DOI:10.1080/10934529.2019.1655368

[65]

Dong L, Gao J, Xie X, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere, 2012, 89(1): 44-51. DOI:10.1016/j.chemosphere.2012.04.010

[66]

熊小波, 孙博琳, 秦静婷, 等. 磺胺甲恶唑对赤子爱胜蚓肠道微生物群落的影响. 环境科学学报, 2020, 40(11): 4207-4214.
Xiong XB, Sun BL, Qin JT, et al. Effects of sulfamethoxazole on Eisenia fetida gut microbiota. Acta Sci Circumstantiae, 2020, 40(11): 4207-4214 (in Chinese).

[67]

沙迪, 翟清明, 张雪萍, 等. 甲氨基阿维菌素苯甲酸盐对黑土区农田土壤动物群落的影响. 地理研究, 2015, 34(5): 872-882.
Sha D, Zhai QM, Zhang XP, et al. Effects of emamectin benzoate on soil animal community in a black soil farmland. Geogr Res, 2015, 34(5): 872-882 (in Chinese).

[68]

Buscot F, Varma A. Microorganisms in soils: roles in genesis and functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[69]

Ding C, He J. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol, 2010, 87(3): 925-941. DOI:10.1007/s00253-010-2649-5

[70]

Grenni P, Ancona V, Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchem J, 2018, 136: 25-39. DOI:10.1016/j.microc.2017.02.006

[71]

Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol, 2019, 10: 338. DOI:10.3389/fmicb.2019.00338

[72]

Liu F, Wu JS, Ying GG, et al. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbiol Biotechnol, 2012, 95(6): 1615-1623. DOI:10.1007/s00253-011-3831-0

[73]

Westergaard K, Müller AK, Christensen S, et al. Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem, 2001, 33(15): 2061-2071. DOI:10.1016/S0038-0717(01)00134-1

[74]

Zielezny Y, Groeneweg J, Vereecken H, et al. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem, 2006, 38(8): 2372-2380. DOI:10.1016/j.soilbio.2006.01.031

[75]

Bååth E, Anderson TH. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem, 2003, 35(7): 955-963. DOI:10.1016/S0038-0717(03)00154-8

[76]

Hammesfahr U, Heuer H, Manzke B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem, 2008, 40(7): 1583-1591. DOI:10.1016/j.soilbio.2008.01.010

[77]

DeVries SL, Zhang PF. Antibiotics and the terrestrial nitrogen cycle: a review. Curr Pollut Rep, 2016, 2(1): 51-67. DOI:10.1007/s40726-016-0027-3

[78]

Cui H, Wang SP, Fu J, et al. Influence of ciprofloxacin on microbial community structure and function in soils. Biol Fertil Soils, 2014, 50(6): 939-947. DOI:10.1007/s00374-014-0914-y

[79]

Yang JF, Ying GG, Liu S, et al. Biological degradation and microbial function effect of norfloxacin in a soil under different conditions. J Environ Sci Health B, 2012, 47(4): 288-295. DOI:10.1080/03601234.2012.638886

[80]

DeVries SL, Loving M, Li X, et al. The effect of ultralow-dose antibiotics exposure on soil nitrate and N2O flux. Sci Rep, 2015, 5: 16818. DOI:10.1038/srep16818

[81]

Conkle JL, White JR. An initial screening of antibiotic effects on microbial respiration in wetland soils. J Environ Sci Heal Part A, 2012, 47(10): 1381-1390. DOI:10.1080/10934529.2012.672315

[82]

Molaei A, Lakzian A, Haghnia G, et al. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS ONE, 2017, 12(7): e0180663. DOI:10.1371/journal.pone.0180663

[83]

侯玉超. 抗生素胁迫下金黄色葡萄球菌生物被膜形成的分子调控机制[D]. 广州: 华南理工大学, 2018.
Hou YC. The molecular regulation mechanism of Staphylococcus aureus biofilm formation under antibiotic stress[D]. Guangzhou: South China University of Technology, 2018 (in Chinese).

[84]

Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett, 2007, 271(2): 147-161. DOI:10.1111/j.1574-6968.2007.00757.x

[85]

Kumar M, Jaiswal S, Sodhi KK, et al. Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environ Int, 2019, 124: 448-461. DOI:10.1016/j.envint.2018.12.065

[86]

Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science, 2008, 321(5887): 365-367. DOI:10.1126/science.1159483

[87]

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010, 74(3): 417-433. DOI:10.1128/MMBR.00016-10

[88]

Kopmann C, Jechalke S, Rosendahl I, et al. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol, 2013, 83(1): 125-134. DOI:10.1111/j.1574-6941.2012.01458.x

[89]

Jechalke S, Kopmann C, Rosendahl I, et al. Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol, 2013, 79(5): 1704-1711. DOI:10.1128/AEM.03172-12

[90]

Hong PY, Yannarell AC, Dai Q, et al. Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol, 2013, 79(8): 2620-2629. DOI:10.1128/AEM.03760-12

[91]

Marti R, Tien YC, Murray R, et al. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure?. Appl Environ Microbiol, 2014, 80(10): 3258-3265. DOI:10.1128/AEM.00231-14

[92]

Zhou SY, Zhu D, Giles M, et al. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere?. Environ Int, 2020, 136: 105359. DOI:10.1016/j.envint.2019.105359

[93]

Luby E, Ibekwe AM, Zilles J, et al. Molecular methods for assessment of antibiotic resistance in agricultural ecosystems: prospects and challenges. J Environ Qual, 2016, 45(2): 441-453. DOI:10.2134/jeq2015.07.0367

[94]

Wang FH, Qiao M, Chen Z, et al. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J Hazard Mater, 2015, 299: 215-221. DOI:10.1016/j.jhazmat.2015.05.028

[95]

Zhu B, Chen Q, Chen S, et al. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced?. Environ Int, 2017, 98: 152-159. DOI:10.1016/j.envint.2016.11.001

[96]

Wellington EM, Boxall AB, Cross P, et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis, 2013, 13(2): 155-165. DOI:10.1016/S1473-3099(12)70317-1

[97]

Michelini L, Meggio F, La Rocca N, et al. Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants: a preliminary study to phytoremediation purposes. Int J Phytoremediation, 2012, 14(4): 388-402. DOI:10.1080/15226514.2011.620654

[98]

Gahlawat S, Gauba P. Phytoremediation of aspirin and tetracycline by Brassica juncea. Int J Phytoremediation, 2016, 18(9): 929-935. DOI:10.1080/15226514.2015.1131230

[99]

Cui EP, Cui BJ, Fan XY, et al. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. Sci Total Environ, 2021, 784: 147093. DOI:10.1016/j.scitotenv.2021.147093

[100]

周显勇, 刘鸿雁, 刘艳萍, 等. 植物修复重金属和抗生素复合污染土壤微生物数量和酶活性的变化. 农业环境科学学报, 2019, 38(6): 1248-1255.
Zhou XY, Liu HY, Liu YP, et al. Changes in microbial populations and enzyme activity under phytoremediation in soil co-contaminated with heavy metals and antibiotics. J Agro-Environ Sci, 2019, 38(6): 1248-1255 (in Chinese).

[101]

Gerhardt KE, Huang XD, Glick BR, et al. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci, 2009, 176(1): 20-30. DOI:10.1016/j.plantsci.2008.09.014

[102]

Nedunuri KV, Govindaraju RS, Banks MK, et al. Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng, 2000, 126(6): 483-490. DOI:10.1061/(ASCE)0733-9372(2000)126:6(483)

[103]

Wu Y, Chen C, Wang G, et al. Mechanism underlying earthworm on the remediation of cadmium-contaminated soil. Sci Total Environ, 2020, 728: 138904. DOI:10.1016/j.scitotenv.2020.138904

[104]

Luo YM, Tu C. Twenty years of research and development on soil pollution and remediation in China. Singapore: Springer Singapore, 2018.

[105]

Yao ZT, Li JH, Xie HH, et al. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci, 2012, 16: 722-729. DOI:10.1016/j.proenv.2012.10.099

[106]

Liu M, Cao J, Wang C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol Environ Saf, 2020, 189: 109996. DOI:10.1016/j.ecoenv.2019.109996

[107]

Hickman ZA, Reid BJ. Earthworm assisted bioremediation of organic contaminants. Environ Int, 2008, 34(7): 1072-1081. DOI:10.1016/j.envint.2008.02.013

[108]

Lin Z, Zhen Z, Luo S, et al. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil. J Hazard Mater, 2021, 412: 125212. DOI:10.1016/j.jhazmat.2021.125212

[109]

Cao J, Ji DG, Wang C. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biol Biochem, 2015, 90: 283-292. DOI:10.1016/j.soilbio.2015.08.020

[110]

吴迎, 冯朋雅, 李荣, 等. 环境抗生素污染的微生物修复进展. 生物工程学报, 2019, 35(11): 2133-2150.
Wu Y, Feng PY, Li R, et al. Progress in microbial remediation of antibiotic-residue contaminated environment. Chin J Biotech, 2019, 35(11): 2133-2150 (in Chinese).

[111]

成洁, 杜慧玲, 张天宝, 等. 四环素类抗生素降解菌的分离与鉴定. 核农学报, 2017, 31(5): 884-888.
Cheng J, Du HL, Zhang TB, et al. Isolation and identification of tetracyclines degrading bacteria. J Nucl Agric Sci, 2017, 31(5): 884-888 (in Chinese).

[112]

Leng Y, Bao J, Chang G, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1. J Hazard Mater, 2016, 318: 125-133. DOI:10.1016/j.jhazmat.2016.06.053

[113]

Shi Y, Lin H, Ma J, et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. J Hazard Mater, 2021, 403: 123996. DOI:10.1016/j.jhazmat.2020.123996

[114]

Hong XX, Zhao YC, Zhuang RD, et al. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Adv, 2020, 10(55): 33086-33102. DOI:10.1039/D0RA04705H

[115]

Hirth N, Topp E, Dörfler U, et al. An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem Biol Technol Agric, 2016, 3(1): 1-11. DOI:10.1186/s40538-015-0051-3

[116]

Topp E, Chapman R, Devers-Lamrani M, et al. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp... J Environ Qual, 2013, 42(1): 173-178. DOI:10.2134/jeq2012.0162

[117]

朱宇恩, 李华, 田浩琦, 等. 用于磺胺类抗生素污染土壤的固化降解小球的制备方法: CN, 112048499A. 2020-12-08.

[118]

解开治, 徐培智, 卢钰升, 等. 四环素类抗生素污染土壤原位微生物修复剂及制备方法与应用: CN, 110592067A. 2019-12-20.

[119]

Cycoń M, Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere, 2017, 172: 52-71. DOI:10.1016/j.chemosphere.2016.12.129

[120]

Zhang Q, Wang B, Cao Z, et al. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. J Hazard Mater, 2012, 221/222: 178-184. DOI:10.1016/j.jhazmat.2012.04.024

[121]

唐鸿志, 王伟伟, 张莉鸽, 等. 合成生物学在环境修复中的应用. 生物工程学报, 2017, 33(3): 506-515.
Tang HZ, Wang WW, Zhang LG, et al. Application of synthetic biology in environmental remediation. Chin J Biotech, 2017, 33(3): 506-515 (in Chinese).

[122]

金亚波, 韦建玉, 屈冉. 蚯蚓与微生物、土壤重金属及植物的关系. 土壤通报, 2009, 40(2): 439-445.
Jin YB, Wei JY, Qu R. The relationship of earthworm and microorganisms, heavy metals in soil and plants. Chin J Soil Sci, 2009, 40(2): 439-445 (in Chinese).

[123]

Vergani L, Mapelli F, Zanardini E, et al. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: an outlook on plant-microbe beneficial interactions. Sci Total Environ, 2017, 575: 1395-1406. DOI:10.1016/j.scitotenv.2016.09.218

[124]

Ma Y, Rajkumar M, Oliveira RS, et al. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater, 2019, 379: 120813. DOI:10.1016/j.jhazmat.2019.120813

[125] [126]

Matich EK, Chavez Soria NG, Aga DS, et al. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. J Hazard Mater, 2019, 373: 527-535. DOI:10.1016/j.jhazmat.2019.02.084

[127]

Li XN, Qu CS, Bian YR, et al. New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics. Environ Pollut, 2019, 255: 113312. DOI:10.1016/j.envpol.2019.113312

相关知识

Environmental risks of antibiotics in soil and the related bioremediation technologies
Progress in bioremediation of copper
Effects of ecological restoration on soil organic carbon in post
土壤中微塑料对陆生植物的毒性及其降解机制研究进展
Prospect of microbial fertilizer in saline soil
Spatial pattern of soil microbial biomass carbon and its driver in temperate grasslands of Inner Mongolia
水生植物与水生态系统健康 (邢伟)
环境科学类的单词该怎么学?环球托福老师带你一起学习托福词汇
The Simulation and Evaluation of Soil Moisture Based on CLDAS
矿区复垦地土壤改良研究进展

网址: Environmental risks of antibiotics in soil and the related bioremediation technologies https://www.huajiangbk.com/newsview124243.html

所属分类:花卉
上一篇: 抑制玉蝉花愈伤组织增殖过程中内生
下一篇: 土壤中微塑料对陆生植物的毒性及其

推荐分享