首页 分享 有机物料深混还田对棕壤孔隙结构及玉米产量的影响

有机物料深混还田对棕壤孔隙结构及玉米产量的影响

来源:花匠小妙招 时间:2024-12-21 18:17

摘要: 土壤孔隙结构在土壤水分和物质运移过程中起着重要作用,开展不同耕作方式和有机物料还田下土壤孔隙结构研究,可为耕地质量评价提供理论依据。本研究于2018年开始,以辽宁南部棕壤为研究对象,以常规耕作(T15)为对照,分析了秸秆浅混还田(0 ~ 15 cm)(T15+S)、秸秆深混还田(0 ~ 35 cm)(T35+S)和秸秆有机肥配施深混还田(0 ~ 35 cm)(T35+SM)对土壤孔隙结构的影响。采集0 ~ 15 cm和15 ~ 35 cm土层原状土柱,采用CT扫描和图像分析技术,量化土壤孔隙参数,包括孔隙分布特征、>31 μm孔隙总数、>31 μm孔隙度、成圆率、欧拉数、各向异性和分形维数。结果表明,T35+S和T35+SM处理较T15处理田间持水量显著增加(P<0.05)。与T15处理相比,0 ~ 15 cm土层T15+S、T35+S和T35+SM处理>31 μm孔隙总数分别显著降低了15.2%、54.4%和60.5%(P<0.05),>31 μm孔隙度分别显著降低了26.9%、39.7%和55.1%(P<0.05),不同孔径孔隙数量也表现出显著降低。而在15 ~ 35 cm土层T35+S和T35+SM处理>31 μm孔隙总数、孔隙度和不同孔径孔隙数量均较T15处理增加。有机物料深混还田改善了上下土层孔隙连通度,促使孔隙形状趋于规则,表现为与T15+S和T15处理相比,0 ~ 15 cm和15 ~ 35 cm土层下T35+S和T35+SM处理各向异性和欧拉数均显著降低(P<0.05)。与T15处理相比,不同处理玉米产量均显著增加,其中T35+SM处理最高,增产了10.4%(P<0.05)。0 ~ 15 cm土层>31 μm孔隙总数、孔隙度和500 ~ 1 000 μm孔隙数量与产量相关性最大,分别达到了28.0%、32.2%和27.1%;15 ~ 35 cm土层500 ~ 1 000 μm孔隙数量与产量的相关性最大,达到了29.0%。因此,有机物料深混还田可改善土壤孔隙结构,增加土壤保水供水能力,提高了该地区农业生产能力,是较为理想的棕壤地力培育途径。

Abstract: Soil pore structure plays an important role in the process of soil water and mass transport, and research on soil pore structure under different tillage and organic material return may provide a theoretical basis for optimizing tillage methods. We conducted a field experiment starting in 2018 in a region of northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage (0 − 15 cm) without or with maize straw return (T15 and T15+S), inversion tillage (0 − 35 cm) with straw return (T35+S), inversion tillage (0 − 35 cm) with cattle manure plus maize straw (T35+SM). Synchrotron radiation CT scanning and digital image analysis technology were used to analyze undisturbed soil columns in 0 − 15 cm and 15 − 35 cm soil layers after maize harvest to quantify soil pore parameters, including pore distribution characteristics, total >31 μm pore number, >31 μm porosity, circularity, Euler number, anisotropy and fractal dimension. The field water capacity was significantly higher in T35+S and T35+SM than that in T15. Compared with T15, the total number of >31 μm pores in 0 − 15 cm soil layer decreased by 15.2%, 54.4% and 60.5%, respectively (P<0.05), and >31 μm porosity decreased by 26.9%, 39.7% and 55.1%, respectively (P<0.05). The number of pores of different particle sizes also decreased significantly in T15+S, T35+S and T35+SM than in T15 in 0 − 15 cm soil layer. But the opposite trends were observed in T35+S and T35+SM in the 15 − 35 cm soil layer. Inversion tillage with organic materials incorporation improved topsoil and subsoil pore connectivity and promoted the regularity of pore shape. The anisotropy and Euler number in 0 − 15 cm and 15 − 35 cm soil layer decreased significantly in T35+S and T35+SM than T15+S and T15. The maize yield in T15+S, T35+S and T35+SM was significantly higher than that in T15, with T35+SM being the highest. Total >31 μm pore number, >31 μm porosity and 500 − 1000 μm pore number in the 0 − 15 cm soil layer were the most correlated with yield with 28.0%, 32.2% and 27.1%, respectively, while <500 μm pore number in the 15 − 35 cm soil layer was the most correlated with yield with 29.0% (P<0.05). Therefore, inversion tillage with organic materials is a more effective way to improve soil fertility, which may enhance agricultural productivity by improving soil pore structure.

图  1   有机物料施用对0 ~ 35 cm土层不同土壤>31 μm孔隙总数和孔隙度的影响

Figure  1.   Effects of organic amendments on >31 μm soil pore number and porosity in the 0 − 35 cm soil layer

图  2   有机物料施用对0 ~ 35 cm土层不同孔径土壤孔隙数的影响

Figure  2.   Effects of organic amendments on different size of soil pore number in the 0 − 35 cm layer

图  3   有机物料施用对玉米产量的影响

Figure  3.   Effects of organic amendments on maize yield

注:TP:>31 μm孔隙度;TN:>31 μm孔隙总数;SN:<500 μm孔隙数;MN:500 ~ 1 000 μm孔隙数;LN:>1 000 μm孔隙数;FD:分形维数;EN:欧拉数;C:成圆率;AN:各向异性;Y:产量;BD:容重;FC:田间持水量;HC:饱和导水率。

Note: TP: total porosity; TN: total number of pores; SN: <500 μm pore number; MN: 500 ~ 1000 μm pore number; LN: >1 000 μm pore number; FD: fractal dimension; EN: euler number; C: circularity; AN: anisotropy; Y: yield; BD: bulk density; FC: field water capacity; HC: saturated hydraulic conductivity.

图  4   基于相关性和多元回归模型的土壤孔隙结构参数与土壤物理性质和玉米产量的相关关系

Figure  4.   Correlation of soil pore structure parameters wtih the dissimilarities of soil physical properties and maize yield based on correlation and multiple regression model

表  1   翻耕和有机物还田田间处理

Table  1   Field treatments under different combinations of plowing and organic amendments

处理
Treatments耕作
Soil tillage有机物还田
Organic amendments有机物还田量
Amounts of organic amendments T15浅翻(Shallow plowing )15 cm秸秆不还田
Straw not return_T15+S浅翻(Shallow plowing) 15 cm秸秆浅混还田
Straw shallow plowing return10 000 kg·hm−2玉米秸秆(Maize straw)T35+S深翻(Deep tillage)35 cm秸秆深混还田
Straw deep tillage return10 000 kg·hm−2玉米秸秆(Maize straw)T35+S+M深翻(Deep tillage)35 cm有机肥加秸秆深混还田
Organic amendments with staw deep
tillage return30 000 kg·hm−2 腐熟生粪(Decomposed raw
manure )+10 000 kg·hm−2 玉米秸秆
(Maize straw)

表  2   试验前0 ~ 35 cm土壤物理性质

Table  2   Soil physicochemical properties in the 0 − 35 cm profile before the experiment

土层深度
Soil depth/
cm容重
Bulk density/
(g·cm−3)田间持水量
Field water capacity/
%饱和导水率
Saturated hydraulic
conductivity/(cm·min−1)
砂粒
Sand/
%粘粒
Silt/
%粉粒
Clay/
% 0 ~ 151.4523.70.2566.018.914.715 ~ 351.5316.60.0464.721.214.1

表  3   有机物料还田对不同土层土壤物理性质的影响

Table  3   Effects of organic amendments on soil physical properties at different layers

深度
Soil depth/cm处理
Treatment容重
Bulk density/(g·cm−3)田间持水量
Field water capacity/%饱和导水率 Saturated
hydraulic conductivity/(cm·min−1) 0 ~ 15T151.43±0.03 Ba24.9±0.97 Ac0.21±0.01 AcT15+S1.28±0.01 Bbc26.3±1.69 Abc0.50±0.03 AaT35+S1.32±0.01 Bb29.2±1.24 Aab0.41±0.01 AbT35+SM1.24±0.02 Bc32.1±1.77 Aa0.43±0.05 Aab15 ~ 35T151.50±0.01 Aa17.8±1.42 Bc0.04±0.00 BcT15+S1.54±0.03 Aa18.3±0.49 Bc0.04±0.01 BcT35+S1.38±0.02 Ab21.4±0.67 Bb0.06±0.00 BbT35+SM1.29±0.02 Ac27.7±0.68 Ba0.09±0.01 BaS***T***S×Tnsnsns 注:同一指标后不同字母表示不同处理间差异达显著水平(P<0.05);大写字母代表不同土层同一处理之间的比较,小写字母代表同一土层不同处理之间的比较;表中S表示有机物料还田,T表示耕作深度,S×T表示有机物料还田和耕作深度的交互作用;ns代表不显著;*代表P<0.05;**代表P<0.01;***代表P<0.001。下同。
Note: Different letters indicate significant differences among treatments at 0.05 level. Uppercase letters represent comparisons among treatments at different soil layers, while lowercase letters represent comparisons between different treatments at the same soil layer. The abbreviations S, T and S×T indicate the individual and interactive effects of organic material amendments and tillage depth. ns indicates no significance; * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.The same is as below.

表  4   有机物料施用对土壤孔隙结构特征参数的影响

Table  4   Effects of organic amendments on parameters of soil pore structure

深度
Soil depth/cm处理
Treatment各向异性
Anisotropy分形维数
Fractal dimension成圆率
Circularity欧拉数
Euler number 0 ~ 15T150.11±0.003 Ab1.96±0.13 Aa0.84±0.01 Aa30 436±1 569 AaT15+S0.15±0.004 Aa1.99±0.07 Aa0.82±0.07 Aa25 810±458 AbT35+S0.07±0.003 Ad2.02±0.02 Aa0.80±0.05 Aa13 846±140 AcT35+SM0.09±0.005 Ac2.06±0.18 Aa0.79±0.07 Aa12 001±766 Ac15 ~ 35T150.12±0.005 Aa2.00±0.12 Aa0.78±0.03 Ba13 033±823 BaT15+S0.11±0.009 Aa1.99±0.05 Aa0.82±0.06 Aa10 139±694 BbT35+S0.04±0.004 Bb2.04±0.17 Aa0.77±0.06 Aa5 091±264 BcT35+SM0.03±0.004 Bb1.88±0.06 Aa0.89±0.07 Aa3 587±295 BdSnsnsns*T******S×Tnsnsnsns [1]

SANDER T,GERKE H H,ROGASIK H. Assessment of Chinese paddy-soil structure using X-ray computed tomography[J]. Geoderma,2008,145 (3/4):303−314.

[2]

PERRET J,PRASHER S O,KANTZAS A,et al. A two-domain approach using CAT scanning to model solute transport in soil[J]. Journal of Environmental Quality,2000,29 (3):995−1010.

[3]

JU X T,KOU C L,CHRISTIE P,et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution,2007,145 (2):497−506. DOI: 10.1016/j.envpol.2006.04.017

[4]

WANG Y L,ZHANG H L,TANG J W,et al. Accelerated phosphorus accumulation and acidification of soils under plastic greenhouse condition in four representative organic vegetable cultivation sites[J]. Scientia Horticulturae,2015,195:67−73. DOI: 10.1016/j.scienta.2015.08.041

[5]

LEI B K,FAN M S,CHEN Q,et al. Conversion of wheat-maize to vegetable cropping systems changes soil organic matter characteristics[J]. Soil Science Society of America Journal,2010,74 (4):1320−1326. DOI: 10.2136/sssaj2009.0222

[6]

TIAN J,FAN M S,GUO J H,et al. Effects of land use intensity on dissolved organic carbon properties and microbial community structure[J]. European Journal of Soil Biology,2012,52:67−72. DOI: 10.1016/j.ejsobi.2012.07.002

[7]

PIRES L F,BORGES J A R,ROSA J A,et al. Soil structure changes induced by tillage systems[J]. Soil and Tillage Research,2017,165:66−79. DOI: 10.1016/j.still.2016.07.010

[8]

GITHINJI L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam[J]. Archives of Agronomy and Soil Science,2014,60 (4):457−470. DOI: 10.1080/03650340.2013.821698

[9]

GŁĄB T,ŚCIGALSKA B,ŁABUZ B. Effect of crop rotations with triticale (× Triticosecale Wittm. ) on soil pore characteristics[J]. Geoderma,2013,202/203:1−7. DOI: 10.1016/j.geoderma.2013.03.002

[10]

DIM P E,FLETCHER R S,RIGBY S P. Improving the accuracy of catalyst pore size distributions from mercury porosimetry using mercury thermoporometry[J]. Chemical Engineering Science,2016,140:291−298. DOI: 10.1016/j.ces.2015.10.023

[11]

RACHMAN A,ANDERSON S H,GANTZER C J. Computed‐tomographic measurement of soil macroporosity parameters as affected by stiff‐stemmed grass hedges[J]. Soil Science Society of America Journal,2005,69 (5):1609−1616. DOI: 10.2136/sssaj2004.0312

[12] 李华,逄焕成,任天志,等. 深旋松耕作法对东北棕壤物理性状及春玉米生长的影响[J]. 中国农业科学,2013,46(3):647−656.

LI H,PANG H C,REN T Z,et al. Effects of deep rotary-subsoiling tillage method on brown physical properties and maize growth in northeast of China[J]. Scientia Agricultura Sinica,2013,46 (3):647−656.

[13]

GETAHUN G T,KÄTTERER T,MUNKHOLM L J,et al. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield[J]. Soil and Tillage Research,2018,184:62−67. DOI: 10.1016/j.still.2018.06.007

[14] 解宏图,刘华,张旭东,等. 辽宁省推广保护性耕作的思考[J]. 农业机械,2019(6):66−68.

XIE H T,LIU H,ZHANG X D,et al. Thoughts on popularizing conservation tillage in Liaoning Province[J]. Farm Machinery,2019 (6):66−68.

[15] 陈欣,张旭东,宇万太,等. 坚持土肥高效管理 促进区域农田生态系统可持续发展[J]. 中国科学院院刊,2018,33(9):992−999.

CHEN X,ZHANG X D,YU W T,et al. Efficient management on soil and fertilizer to promote sustainable development of local agro-ecosystems in Liaohe plain, China[J]. Bulletin of Chinese Academy of Sciences,2018,33 (9):992−999.

[16] 邹文秀,韩晓增,严君,等. 耕翻和秸秆还田深度对东北黑土物理性质的影响[J]. 农业工程学报,2020,36(15):9−18.

ZOU W X,HAN X Z,YAN J,et al. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36 (15):9−18.

[17] 韩晓增,邹文秀,严君,等. 农田生态学和长期试验示范引领黑土地保护和农业可持续发展[J]. 中国科学院院刊,2019,34(3):362−370.

HAN X Z,ZOU W X,YAN J,et al. Ecology in agriculture and long-term research guide protection of black soil and agricultural sustainable development in northeast China[J]. Bulletin of Chinese Academy of Sciences,2019,34 (3):362−370.

[18] 依艳丽. 土壤物理研究法 [M]. 北京: 北京大学出版社, 2009.

YI Y L. Soil physics research method [M]. Beijing: Peking University Press, 2009.

[19] 陈晓侠. 东北黑土团聚体的结构特征研究 [D]. 哈尔滨: 中国科学院研究生院(东北地理与农业生态研究所), 2013.

CHEN X X. Study on structural characteristics of black soil aggregates in Northeast China [D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2013.

[20] 杨永辉,武继承,毛永萍,等. 利用计算机断层扫描技术研究土壤改良措施下土壤孔隙[J]. 农业工程学报,2013,29(23):99−108.

YANG Y H,WU J C,MAO Y P,et al. Using computed tomography scanning to study soil pores under different soil structure improvement measures[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29 (23):99−108.

[21]

JIAO S,YANG Y F,XU Y Q,et al. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across Eastern China[J]. The ISME Journal,2020,14 (1):202−216. DOI: 10.1038/s41396-019-0522-9

[22]

HAYNES R J,NAIDU R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutrient Cycling in Agroecosystems,1998,51 (2):123−137. DOI: 10.1023/A:1009738307837

[23] 王秋菊,高中超,常本超,等. 有机物料深耕还田改善石灰性黑钙土物理性状[J]. 农业工程学报,2015,31(10):161−166.

WANG Q J,GAO Z C,CHANG B C,et al. Deep tillage with organic materials returning to field improving soil physical characters of calcic chernozem[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31 (10):161−166.

[24] 赵丽丽,李陆生,蔡焕杰,等. 有机物料还田对土壤导水导气性的综合影响[J]. 中国农业科学,2019,52(6):1045−1057.

ZHAO L L,LI L S,CAI H J,et al. Comprehensive effects of organic materials incorporation on soil hydraulic conductivity and air permeability[J]. Scientia Agricultura Sinica,2019,52 (6):1045−1057.

[25]

PARIHAR C M,YADAV M R,JAT S L,et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains[J]. Soil and Tillage Research,2016,161:116−128. DOI: 10.1016/j.still.2016.04.001

[26]

KOGA N,HAYASHI K,SHIMODA S. Differences in CO2 and N2O emission rates following crop residue incorporation with or without field burning: a case study of adzuki bean residue and wheat straw[J]. Soil Science and Plant Nutrition,2016,62 (1):52−56. DOI: 10.1080/00380768.2015.1086278

[27]

LIU N, LI Y Y, PING C, et al. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain[J]. Soil and Tillage Research, 2021, 205.

[28] 高子勤,安桂茹. 东北几种耕作土壤的微形态特征[J]. 土壤学报,1982,19(1):85−91+99.

GAO Z Q,AN G R. Micromorphological characteristics of some cultivated soils in north-eastern China[J]. Acta Pedologica Sinica,1982,19 (1):85−91+99.

[29]

PAPADOPOULOS A,BIRD N R A,WHITMORE A P,et al. Investigating the effects of organic and conventional management on soil aggregate stability using X-ray computed tomography[J]. European Journal of Soil Science,2009,60 (3):360−368. DOI: 10.1111/j.1365-2389.2009.01126.x

[30]

BENGOUGH A G,MCKENZIE B M,HALLETT P D,et al. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany,2011,62 (1):59−68. DOI: 10.1093/jxb/erq350

[31]

GUO Y F,FAN R Q,ZHANG X P,et al. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure[J]. Science of the Total Environment,2020,703:134617. DOI: 10.1016/j.scitotenv.2019.134617

[32]

ZHANG Z B,LIU K L,ZHOU H,et al. Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography[J]. Journal of Hydrology,2019,571:1−10. DOI: 10.1016/j.jhydrol.2019.01.041

[33]

DAL FERRO N,CHARRIER P,MORARI F. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment[J]. Geoderma,2013,204/205:84−93. DOI: 10.1016/j.geoderma.2013.04.012

[34]

DEURER M,GRINEV D,YOUNG I,et al. The impact of soil carbon management on soil macropore structure: a comparison of two apple orchard systems in New Zealand[J]. European Journal of Soil Science,2009,60 (6):945−955. DOI: 10.1111/j.1365-2389.2009.01164.x

[35] 韩晓增,邹文秀,陆欣春,等. 构建肥沃耕层对沙性土壤水分物理性质及玉米产量的影响[J]. 土壤与作物,2017,6(2):81−88.

HAN X Z,ZOU W X,LU X C,et al. Effects of constructed fertile layer on sandy soil physical properties and maize yield[J]. Soils and Crops,2017,6 (2):81−88.

[36] 韩晓增,邹文秀,陆欣春,等. 旱作土壤耕层及其肥力培育途径[J]. 土壤与作物,2015,4(4):145−150.

HAN X Z,ZOU W X,LU X C,et al. The soil cultivated layer in dryland and technical patterns in cultivating soil fertility[J]. Soils and Crops,2015,4 (4):145−150.

[37]

FEIZIENE D,FEIZA V,KARKLINS A,et al. After-effects of long-term tillage and residue management on topsoil state in Boreal conditions[J]. European Journal of Agronomy,2018,94:12−24. DOI: 10.1016/j.eja.2018.01.003

相关知识

有机物料覆盖对果园土壤环境的影响
不同秸秆还田方式对旱地红壤细菌群落、有机碳矿化及玉米产量的影响
有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响
有机(类)肥料对作物产量、土壤养分及土壤微生物多样性的影响
秸秆还田深度对土壤温室气体排放及玉米产量的影响
秸秆还田配施化肥对土壤养分及冬小麦产量的影响
化肥与不同有机物料配施对土壤有机碳组分及土壤水稳性团聚体的影响
有机物料对酸化山核桃林地土壤的改良作用
秸秆还田对土壤肥力的影响探究
不同轮作模式对青贮玉米产量、品质及土壤肥力的影响

网址: 有机物料深混还田对棕壤孔隙结构及玉米产量的影响 https://www.huajiangbk.com/newsview1221628.html

所属分类:花卉
上一篇: 复混肥料
下一篇: 高山蔬菜多元素复混叶面肥及其使用

推荐分享