种植密度与施氮量互作对不同玉米品种产量和水分利用效率的影响
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】玉米是我国第一大粮食作物,在保障国家粮食安全中具有重要地位[1]。施氮水平和种植密度是影响玉米生长和产量的主要因素,且两者之间存在显著的互作效应[2-3],合理增密和适量施氮是现阶段我国玉米丰产增效的重要技术途径[4-5]。东北地区作为春玉米主产区,以雨养种植方式为主,春季易出现干旱而夏季降雨较多,对玉米生长造成不良影响。明确氮密互作对春玉米生育期内水分利用的影响,可为春玉米增密丰产、控氮增效生产中水资源的高效利用提供重要参考。【前人研究进展】密度是影响玉米个体和群体发育、调控产量形成的重要因素。在一定气候和土壤条件下,玉米单位面积产量通常随密度的增加呈单峰曲线变化,在最适密度下群体数量与个体质量达到平衡而获得最高产量[6]。密度过低,个体发育较好而群体数量不足,难以获得高产;密度过高则会导致种内竞争加剧,个体发育较差,籽粒的光合物质分配降低,从而导致整体产量下降[7]。施氮是促进玉米生长、增强光合能力、提高产量的重要措施。玉米增密种植条件下,群体的氮素需求量显著提高,适量施氮有助于改善个体发育、实现群体高产[8]。近年来,国内外对玉米氮密互作效应开展了广泛研究,主要集中在群体发育动态[9-10]、冠层光截获与利用[11]、根系形态与分布[12-13]、氮素吸收、分配与利用[14-15]、产量及构成因素[16]等方面。种植密度及其与氮肥的互作,不仅影响玉米生长与产量,对水分的需求及利用也存在影响。王巧梅等[17]在甘肃武威地区研究发现,提高种植密度,大幅增加大喇叭口期至吐丝期玉米群体水分消耗,从而显著提高生育期总耗水量,适度增密有利于提高产量和水分利用效率。刘战东等[18]在辽西地区研究发现,玉米耗水量随种植密度的提高而增加,水分利用效率则先增加后降低,耐密品种的耗水量较稀植型品种更大,而水分利用效率也较高。张平良等[19]在甘肃旱区研究显示,密度和施氮量对全膜双垄沟播条件下玉米的耗水量、水分利用效率均有显著的单因素影响,但互作效应不显著。焦智辉等[20]在甘肃绿洲灌区研究表明,密度和施氮量对玉米耗水量、水分利用效率有显著的互作效应,中密度结合适量施氮可获得最高的水分利用效率。可见,密度和施氮对玉米的水分消耗和利用效率存在显著而复杂的影响,且品种之间可能存在明显的响应差异。【本研究切入点】目前氮密互作对玉米水分利用的研究还较少,且大多针对西部旱区,东北雨养区玉米的相关研究还未见报道,不同玉米品种的水分利用对氮密互作的响应是否存在差异也尚不清楚。【拟解决的关键问题】通过开展两年大田试验,设置不同的种植密度和施氮水平,研究良玉99和德美亚3两个玉米品种生育期内干物质累积、土壤水分含量、植株耗水量、水分利用效率的变化过程及籽粒产量与水分生产力,以期为东北雨养玉米的水资源高效利用提供参考。
1 材料与方法
1.1 试验概况
田间试验分别于2022和2023年在吉林省四平市梨树县王家桥村(43°20′16″N,124°03′36″E)进行。试验田块土壤质地为粘壤土,0—20 cm土层土壤容重为1.5 g·cm-3,pH为5.55,有机质含量为23.4 g·kg-1,碱解氮含量为116.6 mg·kg-1,速效磷含量为30.3 mg·kg-1,速效钾含量为185.3 mg·kg-1。该地区属于暖温带半湿润大陆性季风气候,夏季高温多雨,冬季寒冷干燥,年降雨量为400—600 mm,年均气温为6.5 ℃。2022和2023年2个玉米品种的气象情况如
图1所示。
Fig. 1 Growth processes and meteorological conditions for two maize cultivars in 2022 and 2023
The black triangle represents the sowing date for both cultivars, and the following yellow and green triangles represent the growth stages of eight-leaf, silking and maturity for DMY3 and LY99, respectivelyFull size|PPT slide
试验以良玉99和德美亚3两个品种为供试材料。2个品种生育进程不同,两年间德美亚3生育期较良玉99短11—13 d,主要是由于德美亚3拔节至吐丝期间的发育更快。2个品种生长发育各阶段的进程情况及降雨量显示(
表1)。总体上,播种至八叶期的降雨以2022年较多,而八叶期至吐丝期的降雨则以2023年较多,吐丝期至成熟期的降雨量在两年间相差较小。由于生育进程不同,2个品种生育期的总降雨量及各阶段分布存在差异。
表1 2022和2023年2个玉米品种的生育进程及阶段降雨量Table 1 Duration and the precipitation of different growth stages for two maize cultivars in 2022 and 2023
年份Year
品种
Cultivar
播种天数 Days after sowing (d) 降雨量 Precipitation (mm) 八叶期
V8 吐丝期
R1 成熟期
R6 播种—八叶期
Sowing—V8 八叶期—吐丝期
V8—R1 吐丝期—成熟期
R1—R6 全生育期
Sowing—R6 2022
德美亚3 DMY3 43 63 126 186 148 214 548 良玉99 LY99 48 75 137 203 144 207 554 2023
德美亚3 DMY3 51 76 132 36 210 218 464 良玉99 LY99 53 86 145 36 245 187 468
1.2 试验设计
田间试验为种植密度和施氮量两因素设计。种植密度为主区,设置3个密度分别为5、7和9万株/hm2,以D1、D2和D3表示;施氮量为副区,设置4个水平分别为0、100、200和300 kg·hm-2,以N0、N1、N2和N3表示。共24个处理,每个处理4次重复,小区面积40.8 m2。试验采用垄作方式,等行距种植,行距60 cm。各处理的氮肥以30%作基肥施用,70%作追肥于拔节期施用,磷肥(90 kg P2O5·hm-2)、钾肥(90 kg K2O·hm-2)和锌肥(30 kg ZnSO4·hm-2)均作基肥施用。氮、磷、钾肥分别采用尿素(含N 46%),重钙(含P2O5 45%)和氯化钾(含K2O 60%)。两年玉米生育期内未进行灌溉,除施肥措施外其余田间管理均按当地最佳方法进行。
1.3 测定项目与方法
玉米播种前,采用“S”型取样法采集0—20 cm土层土壤,按照常规方法测定土壤基本理化性质[21]。
于2个玉米品种播种前、八叶期(V8)、吐丝期(R1)和成熟期(R6),在各小区采集0—100 cm土样,20 cm为一层,采用烘干法测定土壤质量含水量。每个土层测3次,以平均值作为该小区相应土层土壤含水量值。根据土壤含水量和容重,计算土壤贮水量(soil water storage,SWS),公式如下:
式中,ρ为土壤容重(g·cm-3),h为土层深度(cm),ω为土壤质量含水量(g·g-1)。
根据土壤水分平衡法,计算不同生育阶段玉米植株的耗水量(Evapotranspiration,ET)[22]:
式中,P为降雨量,I为灌溉量,Cr为潜在毛细管上升水量,R为径流,D为下渗水量。ΔS代
表0—100 cm土层水分变化(mm)。试验区土壤表面平坦,生育期内未发生地表径流,该区域地下水位在距土壤表面10 m以下,且未进行灌溉,因此灌溉量、地表径流量、毛细管水上升量均为0。根据SUN等[23]和LI等[22]的研究,该地区未发生100 cm土层以下水分下渗。因此,公式(2)可简化为ET = P±ΔS。
于2个玉米品种八叶期、吐丝期和成熟期,在每个小区选3株长势均匀的玉米植株,采集地上部样品,于烘箱内105 ℃杀青30 min后于75 ℃烘至恒重,获得干重。玉米生理成熟后4—5 d内,在每个小区中间20 m2进行收获测产。参考LI等[22],根据各生育时期植株干重、籽粒产量和耗水量计算各阶段水分利用效率和最终水分生产力:
式中,ΔDMn为某一生育阶段的植株干重变化量,ETn为某一生育阶段的植株耗水量。
1.4 数据处理与统计分析
采用SPSS 20软件进行品种、密度和施氮量的三因素方差分析,采用LSD法比较处理间在P<0.05水平上的差异显著性。
2 结果
2.1 种植密度和施氮量对土壤水分状况的影响
受降雨量影响,2022年玉米生育期内土壤含水量整体上高于2023年,且两年的变化趋势存在明显差异(
图2)。2022年土壤含水量随生育进程先增加后降低,2023年前期土壤含水量变化相对平缓,吐丝期达到最高而后有所降低。不同玉米品种生育期内土壤含水量在两年间的变化趋势基本一致,但对种植密度的响应存在显著差异。德美亚3各生育时期和良玉99八叶期的土壤含水量随密度的增加而逐渐下降,良玉99在吐丝期和成熟期的土壤含水量则呈D1>D3>D2趋势。两年中,德美亚3在D2、D3密度下各时期土壤含水量较D1密度分别低5.6%—10.0%和9.0%— 19.9%,良玉99分别降低5.7%—18.6%和6.5%—9.7%。各种植密度下,玉米各生育时期土壤含水量均随施氮量增加而降低,大多数时期N2和N3处理显著低于N0处理。两年中,德美亚3在N1、N2、N3处理的各时期土壤含水量较N0处理分别低3.5%—9.1%、6.9%—16.7%和8.0%—22.6%,良玉99分别降低3.5%—9.5%、6.1%—18.7%和8.2%—24.5%。另外,各施氮处理之间土壤含水量的差异随生育进程持续而逐渐增大。
Fig. 2 Effects of planting density and nitrogen rate on the average water content of 0-100 cm soil layer during maize growing season in 2022 and 2023
*, ** and *** indicate the effect is significant at P<0.05, P<0.01 and P<0.001 levels, respectively, while ns indicates the effect is not significant (P>0.05). The same as belowFull size|PPT slide
玉米各生育时期0—100 cm土壤储水量在中、高种植密度条件下显著降低,且2个品种在吐丝期和成熟期对密度的响应存在差异(
表2)。两年成熟期,德美亚3在D2、D3密度较D1密度平均分别低10.0%和19.9%,而良玉99平均分别低18.6%和7.1%。各种植密度下,土壤储水量均随施氮量增加呈下降趋势,施氮量与密度无显著交互作用。两年成熟期,德美亚3在N1、N2、N3处理相比N0处理平均分别低9.1%、16.7%和22.6%,良玉99则平均分别低9.5%、18.7%和24.5%。
表2 2022、2023年植株密度和施氮量对不同玉米品种各生育时期土壤贮水量(mm)的影响Table 2 Effects of planting density and nitrogen rate on soil water storage (mm) at different growth stages for different maize cultivars in 2022 and 2023
种植密度
Planting
density 施氮量
Nitrogen
rate 2022 2023 播种
Sowing 八叶期 V8 吐丝期 R1 成熟期 R6 播种Sowing 八叶期 V8 吐丝期 R1 成熟期 R6 良玉99
LY99 德美
亚3
DMY3 良玉99
LY99 德美
亚3
DMY3 良玉99
LY99 德美
亚3
DMY3 良玉99
LY99 德美
亚3
DMY3 良玉99
LY99 德美
亚3
DMY3 良玉99
LY99 德美
亚3
DMY3 良玉99
LY99 德美
亚3
DMY3 D1 N0 251.2 359.2a 364.5a 377.6a 391.5a 327.1a 343.8a 245.1a 247.4a 240.3a 240.7a 292.2a 282.6a 285.6a 271.8a N1 251.2 352.3ab 344.1b 348.6b 366.9b 293.2b 313.9b 232.8b 239.4ab 222.7b 229.5ab 268.0b 264.8b 256.5b 245.6b N2 251.2 346.8ab 334.8b 336.0c 353.3bc 272.4c 289.2c 226.0b 233.8b 217.4b 222.3b 259.6bc 253.3bc 240.9c 238.7b N3 251.2 338.0b 331.2b 323.1c 336.3c 254.2d 269.2d 222.5b 232.9b 212.7b 219.8b 250.1c 243.7c 222.9d 214.5c D2 N0 251.2 344.4a 339.9a 343.2a 362.9a 282.1a 317.6a 231.2a 232.9a 223.9a 224.2a 260.0a 258.3a 240.9a 246.7a N1 251.2 333.0ab 333.5ab 318.0b 339.7b 251.9b 279.6b 227.0a 229.2a 216.4b 217.4ab 235.5b 247.8b 206.5b 229.4b N2 251.2 327.71ab 318.2bc 299.5c 318.2c 218.5c 255.1c 217.6ab 222.4ab 202.2c 206.6b 217.0c 230.9c 181.2c 201.8c N3 251.2 319.5b 314.5c 289.0c 307.2c 203.2c 245.7d 210.1b 219.1b 192.5c 204.0b 206.4c 221.8c 167.3c 191.8d D3 N0 251.2 326.7a 327.8a 350.0a 333.3a 301.4a 284.5a 222.7a 224.4a 210.5a 212.4a 273.7a 239.5a 263.1a 215.0a N1 251.2 319.4a 321.1a 332.1b 312.6b 276.9b 254.6b 217.7a 217.7ab 201.0ab 203.7ab 252.3b 225.5b 253.2a 203.0b N2 251.2 316.2a 313.7a 320.7c 305.8bc 257.4c 233.3c 213.0ab 213.1b 191.6b 196.8b 232.1c 213.0c 212.2b 181.5c N3 251.2 313.5a 312.8a 309.0c 297.8c 237.2d 217.7d 208.7b 209.4b 188.1b 191.9b 226.7c 205.1c 198.2c 161.7d 方差分析ANOVA 品种Cultivar (C) ** * *** ns ns ** *** 密度Density (D) *** *** *** *** *** *** *** 氮素N fertilizer (N) *** *** *** ** ** *** *** C×D ns *** *** ns ns *** *** C×N ns ns ns ns ns ns ns D×N ns ns ns ns ns ns ns C×D×N ns ns ns ns ns ns nsD1、D2和D3分别表示5、7和9万株/hm2。不同字母表示同一密度下施氮量之间差异显著(P<0.05)。下同D1, D2 and D3 indicate 50 000, 70 000 and 90 000 plants/hm2, respectively. Different letters indicate the significant differences among different N rates under the same planting density (P<0.05). The same as below
2.2 种植密度和施氮量对玉米生育期耗水量的影响
2022年2个玉米品种生育期内的总耗水量均高于2023年(
图3)。玉米生育期内水分蒸散主要集中于吐丝期—成熟期,2022年该阶段耗水量占总耗水量的48.6%—57.1%,2023年占比为42.9%—52.0%。受生育前期降雨分布的影响,2022年播种期—八叶期和八叶期—吐丝期2个阶段的耗水量接近,而2023年八叶期—吐丝期的耗水量显著高于播种期—八叶期。品种之间,2022年良玉99的耗水量显著高于德美亚3,而2023年德美亚3的耗水量相对较高。种植密度显著影响玉米生育期的水分消耗,且密度与品种表现出显著交互作用。随密度的增加,德美亚3耗水量逐渐提高,良玉99耗水量则呈先增加后减小趋势。两年间,德美亚3在D2、D3密度的总耗水量较D1密度平均分别高4.5%和9.1%,良玉99在D2密度下较D1、D3密度分别高9.3%和6.9%。玉米生育期耗水量也受施氮的显著影响,但施氮量与密度、品种均无交互作用。2个玉米品种两年的耗水量在各密度下均随施氮量的增加而持续上升。德美亚3在N1、N2、N3总耗水量较N0分别增加4.8%、8.7%和11.8%,良玉99则分别增加5.0%、9.8%和12.8%。结果表明,不同玉米品种耗水量对施氮量的变化呈一致的响应趋势,但对种植密度的响应存在差异。
Fig. 3 Effects of planting density and nitrogen rate on the evapotranspiration during various growth stages for different maize cultivars in 2022 and 2023
Different uppercase letters indicate significant differences among the planting densities at P<0.05 level, and different lowercase letters indicate significant differences among the N rates under the same density at P<0.05 level. The same as belowFull size|PPT slide
2.3 种植密度和施氮量对玉米植株干重的影响
2023年2个玉米品种的植株总干重均高于2022年,且两年均以良玉99显著更高(
图4)。玉米生长中后期的植株干重累积量远高于前期,八叶期—吐丝期和吐丝期—成熟期的干重占比分别为39.7%— 52.4%和35.6%—47.0%。种植密度显著影响玉米植株的干重累积,但不同品种对密度的响应存在明显差异。两年中,良玉99总干重在D2密度下显著高于D1、D3密度,平均增幅分别为13.8%和20.0%;德美亚3总干重在D2、D3密度下显著高于D1密度,平均增幅分别为21.5%和21.1%。施氮显著提高各密度下玉米的干重累积,且与密度存在显著交互作用。D1密度下N1处理与N2、N3处理的干重差距相对较小,且2023年无差异。D2密度下N1处理干重大幅低于N2、N3处理,后两者之间则无显著差异。D3密度下各施氮处理的干重随施氮量增加而持续提高,除2022年良玉外均以N3显著高于N2。可见,随种植密度提高,低施氮量下玉米植株干重与中、高施氮量的差距呈先增加后减小的趋势,且在D3密度下,N3处理的干重未出现下降,继续增加氮肥投入是否能够增加干重,需进一步探究。
Fig. 4 Effects of planting density and nitrogen rate on plant dry matter accumulation at various growth stages for different maize cultivars in 2022 and 2023
Full size|PPT slide
2.4 种植密度和施氮量对玉米籽粒产量的影响
与植株干重相似,2023年2个玉米品种的籽粒产量均显著高于2022年,但品种之间产量无明显差异(
图5)。种植密度显著影响玉米籽粒产量,且与品种存在显著交互效应。良玉99在各密度下的产量趋势为D2>D1>D3,D2密度较D1、D3密度两年平均增产11.1%和18.3%。德美亚3产量在D2和D3密度下接近,均显著高于D1密度,两年平均增产10.5%和9.3%。施氮显著提高玉米籽粒产量,且与品种、密度均有显著的两因素交互作用。与N0相比,N1、N2、N3处理下良玉99分别增产38.0%、57.2%和60.7%,德美亚3分别增产24.4%、36.2%和38.2%,良玉99产量对施氮的响应明显更大。不同密度下,2个玉米品种产量对施氮量的响应趋势与植株干重相似,低施氮量下的产量与高施氮量下的产量差距随密度增加而逐渐增大。总体来看,2个玉米品种在中密度条件下配合施氮200 kg N·hm-2可获得较佳的产量效应。
Fig. 5 Effects of planting density and nitrogen rate on grain yields for different maize cultivars in 2022 and 2023
Full size|PPT slide
2.5 种植密度和施氮量对不同玉米品种水分利用的影响
相比2023年,2022年2个玉米品种播种期—八叶期和吐丝期—成熟期的水分利用效率明显较低(
图6)。除2023年八叶期—吐丝期,两年间各生育阶段的水分利用效率均以良玉99高于德美亚3。除2022年播种期—八叶期外,种植密度显著影响两年不同品种玉米各生育阶段的水分利用效率。2023年播种期—八叶期,良玉99的水分利用效率对密度变化无明显响应,德美亚3则随密度的增加持续提高。八叶期—吐丝期2个品种水分利用效率对密度的响应趋势一致,2022年均以D2、D3密度更高,2023年则以D2密度更高。吐丝期—成熟期,良玉99的水分利用效率在两年均以D1、D2密度更高,德美亚3则均以D2密度最高。
Fig. 6 Effects of planting density and nitrogen rate on water use efficiency during various growth stages for different maize cultivars in 2022 and 2023
Full size|PPT slide
施氮显著提高两年大多数生育阶段的玉米水分利用效率,并在两年八叶期—吐丝期与密度均有显著交互作用,在2023年吐丝期—成熟期与密度、品种均有显著的两因素交互作用。八叶期—吐丝期,2022年D1密度下2个玉米品种各施氮水平的水分利用效率均无差异,而D2和D3密度下德美亚3对施氮的响应更明显;2023年2个品种对施氮的响应趋势基本一致,施氮处理间水分利用效率的差异随密度增加而逐渐增大。两年间吐丝—成熟期,D1密度下2个玉米品种的水分利用效率在3个施氮处理之间均无差异,D2和D3密度下2个品种的水分利用效率在N2和N3之间无差异,均高于N1。
2023年玉米生育期的总水分利用效率和最终的水分生产力均高于2022年(
图7)。良玉99的总水分利用效率较德美亚3两年平均高16.3%,但2个品种的水分生产力无显著差异。种植密度显著影响总水分利用效率,两年均以D2密度最高,而且2个品种对密度的响应趋势不一致。良玉99总水分利用效率以D1和D2密度显著高于D3密度,德美亚3则以D2和D3密度显著高于D1密度。对于水分生产力,良玉99在D1和D2密度下分别为21.2和21.5 kg·hm-2·mm-1,较D3密度分别高8.6%和10.4%;德美亚3在D2密度下最高,达到21.4 kg·hm-2·mm-1,较D1和D3密度分别高5.8%和5.3%。施氮显著提高玉米的总水分利用效率和水分生产力,总体上D1密度下施氮处理间差异较小,而D2和D3密度下显著增大。D2密度下,N1、N2、N3良玉99的水分生产力较N0处理分别高25.7%、44.5%和41.7%,D3密度下分别高21.0%、34.9%和42.8%。3个施氮处理中,德美亚3水分生产力较N0增幅在D2密度下分别为18.1%、28.2%和26.7%,D3密度下分别为14.8%、20.5%和22.8%。相比德美亚3,良玉99水分生产力在中、高密度施氮后增幅更高。
Fig. 7 Effects of planting density and nitrogen rate on water use efficiency during the entire growing season and water productivity for different maize cultivars in 2022 and 2023
Full size|PPT slide
2.6 不同种植密度和施氮量下玉米植株水分利用效率与籽粒产量、水分生产力的关系
2个玉米品种的籽粒产量与各生育阶段的水分利用效率及总水分利用效率均表现出显著的正相关关系,而水分生产力除八叶期—吐丝期良玉99外也均呈显著正相关关系(
图8)。相比2022年,2023年产量与播种期—八叶期、八叶期—吐丝期水分利用效率的相关性(R2)明显更高,而产量与吐丝期—成熟期水分利用效率及总水分利用效率的相关性在两年间接近。水分生产力与各生育阶段的水分利用效率及总水分利用效率的相关系则以2023年普遍较高。结果表明,氮密互作通过影响玉米植株各生育阶段的水分利用而显著影响籽粒产量和水分生产力。
Fig. 8 Relationship between grain yield, water productivity and water use efficiency during various growth stages for different maize cultivars in 2022 and 2023
Full size|PPT slide
3 讨论
3.1 种植密度对不同玉米品种生长和产量的影响
玉米产量主要决定于植株干物质积累,通过合理增密而增加群体干物质生产和累积是实现玉米增产的重要途径[24]。大量研究显示,玉米产量随种植密度的增加一般呈单峰变化曲线,即密度过高会导致群体减产[6]。本研究中,良玉99的植株干重和籽粒产量在5.00—9.00万株/hm2种植密度范围内随密度增加表现出单峰变化趋势,在中密度条件达到高峰。SHAO等[25]在对不同玉米品种的密度响应研究中也发现,良玉99的耐密性相对较差,9.00万株/hm2密度产量相比7.50万株/hm2密度下降超过10%。与良玉99不同,德美亚3在密度从7.00万株/hm2增加至9.00万株/hm2时,植株干重和产量并无显著变化,说明本研究设置的密度高值还未到达其产量曲线的拐点,需设置新的种植密度来进一步探究其在研究区域的最优密度,也表明其耐密性相比良玉99更强,这也和何长安等[26]的研究一致。刘战东等[18]基于稀植品种丹玉12和密植品种中地77的对比研究显示,2个品种高峰对应的适宜密度分别为5.25和6.75万株/hm2,耐密型品种的适宜密度明显更高。本研究采用的2个品种在株型、根系构型等方面差异显著,这是导致2个品种对密度响应差异的主要原因。德美亚3的株型相比良玉99更为紧凑,根系扩展角度相对小且下扎分布较深,因此在高密种植条件下其植株个体间对光照、土壤及水分等资源的竞争相对较小,因此较良玉99更加耐密。
ZHAO等[27]和SHEN等[28]研究显示,东北地区玉米形成高产群体的适宜种植密度在6.70—7.50万株/hm2。本研究发现,2个玉米品种的产量均可在7.00万株/hm2左右达到最高水平,与前人的研究结果接近。但是,现阶段吉林省农户的玉米种植密度主要集中在5.50—6.00万株/hm2之间(平均为5.70万株/hm2),较低的群体数量限制了产量潜力发挥,导致农户相比最佳管理措施仍有较大的产量差[29]。因此,该区域玉米生产有较大的增密空间。基于本研究2个不同耐密性品种的产量表现,建议吉林中部地区玉米种植可将密度适度增至7.00万株/hm2以同步优化个体质量与群体数量,构建合理的群体结构实现进一步增产。
3.2 氮密互作对不同玉米品种生长和产量的影响
种植密度的变化导致作物个体发育和群体结构发生显著变化,也必然影响植株对氮素的需求、吸收利用、以及对氮肥施用的响应。李广浩等[10]研究显示,低密度(5.25万株/hm2)条件下玉米群体对氮素的需求较低,成熟期植株吸氮量为195.2 kg N·hm-2,而高密度(8.25万株/hm2)条件下群体的植株氮素需求明显增加,成熟期吸氮量达212.9 kg N·hm-2,较低密度增加9.1%。低密度条件下,施氮量达到180 kg N·hm-2后玉米产量无显著变化,而高密度下施氮270 kg N·hm-2较180 kg N·hm-2仍有显著增产表现,增幅达10.2%。曹胜彪等[14]研究也发现,低密度条件下玉米施氮的产量增幅为6.1%—11.3%,而中、高密度下施氮的产量增幅则分别为8.0%—17.7%和8.7%— 18.9%。本研究中,低密度下2个玉米品种的产量在不同施氮量间无显著差异,中、高密度下200和300 kg N·hm-2处理的产量显著高于100 kg N·hm-2处理,而且良玉99在高密度下300 kg N·hm-2处理较200 kg N·hm-2处理也显著更高,增幅达9.2%。施氮处理之间玉米产量差的增大,证明玉米群体的氮素需求随密度的增加而大幅提高,导致土壤氮素供应渐显不足而需要更多的肥料氮素,因此施氮的产量反应也逐渐提升。
胡聪慧等[30]研究认为,良玉99、德美亚3分别为高氮高效型和低氮高效型品种。本研究结果也反映出2个品种的氮素响应差异。德美亚3在各密度下N0处理的产量均显著高于良玉99,同时在中高密度下施氮处理间的产量差也较良玉99略小,说明其在低氮条件下对氮素的利用效率更高,而对施氮的响应程度较低。这一方面可能与德美亚3紧凑的株型和相对较低的植株干重有关,使其对氮素的需求相对较少因而施氮响应较低[30]。另一方面也可能与其较深的根系分布有关,增强了对土壤氮素的获取与吸收,而减弱了对外源氮肥的响应[25,31-32]。对于良玉99,高氮量处理通过充足供氮而满足了其植株较高的氮素需求,因此在高密度条件下相比中氮量处理仍有显著增产。可见,对于不同玉米品种,应根据种植密度合理配置其氮肥供应水平,以发挥氮密互作的协同效应而促进增产增效。
3.3 氮密互作对玉米水分消耗与利用的影响
水分是影响作物生长和高产的重要因素,增密种植与氮素优化管理也必须考虑其水分的供应与利用。特别是对于旱地种植的玉米来说,水分的高效利用更是保障其高产稳产和养分高效的重要基础。多数已有研究显示,增加种植密度显著提高玉米群体的水分需求,耗水量增幅在4.0%—22.8%[18⇓-20,33]。相应地,作物耗水量的增加导致高密条件下土壤含水量的下降[17]。本研究中,低密度下种植下玉米生育期土壤水分含量较高,增施氮肥投入降低土壤含水量。玉米生育期总耗水量由低密度增至中密度时显著增加,增幅达6.9%。但是,密度继续提高时2个品种的耗水量变化出现差异,德美亚3持续增加而良玉99显著下降。这可能与良玉99较差的耐密性有关,其高密条件下植株生长受限而导致对水分的消耗利用较中密度条件减少。施氮对玉米生长有显著的促进作用,导致植株群体的水分消耗随施氮量增加而不断提高,而土壤含水量则持续下降,这与前人的研究结果一致[33]。而且,本研究发现施氮量与种植密度未对玉米总耗水量产生显著的交互影响,这与张平良等[19]的研究相似。
本研究中,2个玉米品种不同生育阶段的耗水量及水分利用效率对种植密度、施氮量表现出复杂的响应特征,主要原因可能是两年间降雨量及其分布的巨大差异所导致,同时也可能与品种间不同的发育进程、株型结构及根系构型有关[25]。但是,2个品种生育期的总水分利用效率和水分生产力的响应趋势在两年间基本接近。总体上,不同施氮处理间玉米水分利用的差异随密度的增加而逐渐增大,且良玉99的差异更为明显。作物的水分利用受其干物质累积(籽粒产量)和耗水量的共同影响[22]。相比德美亚3,良玉99个体较大,生育期内干物质累积相对较多,因此耗水量接近的情况下其总水分利用效率更高。但是,良玉99的收获指数相对较低(数据未展示),因此以产量计的水分生产力与德美亚3并无显著差异。两年间,2个玉米品种均以中密度(7万株/hm2)配合中量施氮(200 kg N·hm-2)可获得较佳水分利用率,结合产量结果推荐以此作为该区域的推荐种植密度和施氮量。
目前,东北雨养区有关玉米水分消耗与利用对氮密互作响应的研究还较少,本研究为基于水分高效利用的氮密调控提供了技术参考。但是,不同氮密条件下玉米植株水分消耗的过程特征及其高效利用的相关机理还需加强研究,特别是增密种植条件下,不同玉米品种的植株水分蒸腾与土面水分蒸发对耗水量的贡献、对水分利用的影响及其在不同生育阶段的变化特征需进一步研究明确,以期为区域玉米的高产稳产与水肥资源协同高效提供理论与技术依据。
4 结论
种植密度和施氮量显著影响玉米的植株干重和籽粒产量,但品种间对种植密度的响应趋势不同。良玉99在各密度条件下的产量趋势为中密度>低密度>高密度,德美亚3则在种植7、9万株/hm2的产量显著高于5万株/hm2。随种植密度的提高,2个品种在低施氮量与高施氮量下产量差距均呈逐渐增大趋势,且良玉99的表现更为明显。种植密度和施氮量也显著影响玉米对水分的消耗和利用,德美亚3的生育期总耗水量随密度增加呈持续上升趋势,而良玉99则以中密度显著高于其他密度。不同密度条件下,2个品种的耗水量均随施氮量增加而持续上升。受年际降雨量及分布的影响,玉米不同生育时期的水分利用效率对种植密度和施氮表现出复杂的响应趋势。良玉99在种植5、7万株/hm2的水分生产力显著高于9万株/hm2;德美亚3则在7万株/hm2的水分生产力较高。施氮对玉米水分生产力的影响在不同密度下存在差异,总体上低密度下施氮处理间差异较小,而中、高密度下显著增大。两年间,2个玉米品种均以中密度(7万株/hm2)配合中量施氮(200 kg N·hm-2)可获得较佳水分利用率,结合产量结果推荐以此作为该区域的推荐种植密度和施氮量。
{{custom_citation.pmid}5}
=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.pmid}1}{{custom_citation.pmid}8}[1]李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
摘要
玉米是全球也是中国第一大作物,在保障国家粮食安全中占有重要地位。当前,面对经济社会的快速发展和人增地减、资源紧缺、生态环境恶化等一系列突出问题,玉米栽培学科正面临着严峻挑战和新的历史发展机遇,在此重要历史关头,回顾中国玉米栽培研究历程和科技进展,探索未来发展方向具有重要的意义。分析表明,经过60年不懈努力,玉米栽培研究的目标已由产量为主向高产、优质、高效、生态、安全等多目标协同发展,研究内容不断拓宽与深入,形成了具有显著中国特色的玉米栽培科学与技术体系。进入21世纪以来,玉米栽培研究进入黄金发展期,在栽培理论、关键技术创新与应用方面取得一系列重要突破,在保障国家粮食安全中发挥了重要的作用。围绕未来玉米生产对科技的需求,依据现代科技的发展趋势,笔者认为高产、优质、高效、生态、安全仍将是未来玉米栽培研究的主要目标,并提出今后20年重点研究的方向与任务:一是继续探索不同生态区玉米产量潜力及突破技术途径,努力提高单产水平;二是转变生产方式,围绕籽粒生产效率,以提高资源利用效率和劳动生产效率为目标,降低生产成本,提高商品质量,增强玉米市场竞争力;适度发展青贮玉米和鲜食玉米等,促进玉米生产向多元化方向发展;三是应对全球气候变化,开展抗逆、减灾、稳产理论和技术研究,实施保护性耕作,实现玉米可持续生产;四是依托现代信息技术,开展智能化栽培技术研究,实现玉米精准生产与管理;五是强化栽培学科基础研究,玉米设计栽培,夯实玉米科技研究和生产发展基础。
LI S K,
ZHAO J R,
DONG S T,
ZHAO M,
LI C H,
CUI Y H,
LIU Y H,
GAO J L,
XUE J Q,
WANG L C,
WANG P,
LU W P,
WANG J H,
YANG Q F,
WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
Maize is the first major crop in China and in the world, it plays an important role in ensuring China’s food security. At present, in the face of the rapid development of economic society and a series of problems such as population growth and land reduction, resources shortage and ecological environment deterioration, maize cultivation science is facing new historic opportunities and challenges. In this crucial historical juncture, it is of great significance to review the scientific research and technical progress of maize cultivation in China and to explore the future development direction. Analysis shows that, the aim of maize cultivation research has been transformed from yield production to collaborative development of high yield, high quality, high efficiency, eco-friendly, security and other goals after 60 years of efforts. The research contents were gradually widened and further deepened with remarkable Chinese characteristics. Since entering into the 21th century, the research of maize cultivation has entered a golden development stage. In this stage, a series of breakthroughs in maize cultivation theory, key technology innovation and application have been achieved, which have taken a positive role in ensuring China’s food security. According to the demand of maize production for science and technology in the future and the development trend of modern science and technology, this article indicated that, in the future, high quality, high efficiency, eco-friendly, security will still be the main objectives of maize cultivation. In this article, the key directions and tasks of maize cultivation research in the next 20 years were put forward: (1) Continue to explore the potential of maize yield in different ecological areas and technologies that can realize these potentials, and make every effort to raise the level of yield per unit; (2) Transform the mode of production and take the improving efficiency of resource utilization and labor productivity as goals, reduce the production costs, improve product quality and the market competitiveness of maize; to develop silage and fresh maize so as to promote the diversified development of maize production; (3) In order to respond to the global climate change, carry out the theoretical and technological researches on yield stability and anti-disaster to realize the sustainable production of maize; (4) Based on modern information technology to carry out the researches of intelligent cultivation technology to achieve maize precise production and management; (5) Strengthen the basic researches of maize cultivation and tamp the researches on maize science and technology and the basement of maize production.
{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.url}3}[2]王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜. 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20(2): 280-289.
WANG S,
HAN X R,
ZHAN X M,
YANG J F,
WANG Y,
LIU Y F,
LI N. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 280-289. (in Chinese)
{{custom_citation.url}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citationIndex}8}[3]陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7): 1153-1160.
CHEN C Y,
HOU Y H,
SUN R,
ZHU P,
DONG Z Q,
ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
{{custom_citationIndex}6}https://doi.org/{{custom_citationIndex}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[4]陈延玲, 吴秋平, 陈晓超, 陈范骏, 张永杰, 李前, 袁力行, 米国华. 不同耐密性玉米品种的根系生长及其对种植密度的响应. 植物营养与肥料学报, 2012, 18(1): 52-59.
CHEN Y L,
WU Q P,
CHEN X C,
CHEN F J,
ZHANG Y J,
LI Q,
YUAN L X,
MI G H. Root growth and its response to increasing planting density in different maize hybrids. Plant Nutrition and Fertilizer Science, 2012, 18(1): 52-59. (in Chinese)
{{custom_citation.annotation}1}0}9}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_ref.citedCount>0}7}0}6} && {{custom_ref.citedCount>0}5}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}3}0}2} && {{custom_ref.citedCount>0}1}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">{{custom_citationIndex}9}本文引用 [{{custom_citationIndex}0}]摘要{{custom_ref.id}8}[5]王寅, 冯国忠, 张天山, 茹铁军, 袁勇, 高强. 基于产量、氮效率和经济效益的春玉米控释氮肥掺混比例. 土壤学报, 2015, 52(5): 1153-1165.
WANG Y,
FENG G Z,
ZHANG T S,
RU T J,
YUAN Y,
GAO Q. Optimizing blending ratio of controlled release n fertilizer for spring maize based on grain yield, N efficiency, and economic benefit. Acta Pedologica Sinica, 2015, 52(5): 1153-1165. (in Chinese)
{{custom_ref.id}6}https://doi.org/{{custom_ref.id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}8}{{custom_ref.citedCount}4}本文引用 [{{custom_citationIndex}5}]摘要{{custom_ref.citationList}3}[6]WEI J G,
CHAI Q,
YIN W,
FAN H,
GUO Y,
HU F L,
FAN Z L,
WANG Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture, 2024, 23(1): 122-140.
<p class="MsoNormal" align="left" style="text-align:left;"> The development of modern agriculturerequires the reduction of water and chemical N fertilizer inputs. Increasing the planting density can maintain higheryields, but also consumes more of these restrictive resources. However, whether an increased maize density cancompensate for the negative effects of reduced water and N supply on grain yieldand N uptake in the arid irrigated areas remains unknown. This study is part of a long-term positioningtrial that started in 2016. A split-splitplot field experiment of maize was implemented in the arid irrigated area of northwesternChina in 2020 to 2021. The treatments includedtwo irrigation levels: local conventional irrigation reduced by 20% (W1, 3,240 m<sup>3</sup> ha<sup>–1</sup>) and local conventional irrigation (W2, 4,050 m<sup>3</sup> ha<sup>–1</sup>);two N application rates: local conventional N reduced by 25% (N1, 270 kg ha<sup>–1</sup>)and local conventional N (360 kg ha<sup>–1</sup>); and three planting densities:local conventional density (D1, 75,000 plants ha<sup>–1</sup>), density increasedby 30% (D2, 97,500 plants ha<sup>–1</sup>), and density increased by 60% (D3, 120,000plants ha<sup>–1</sup>). Our results showedthat the grain yield and aboveground N accumulation of maize were lower under thereduced water and N inputs, but increasing the maize density by 30% can compensatefor the reductions of grain yield and aboveground N accumulation caused by the reducedwater and N supply. When water was reducedwhile the N application rate remained unchanged, increasing the planting densityby 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%. Under reduced water and N inputs, increasing themaize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities. Compared with W2N2D1, the N uptake efficiencyand N partial factor productivity increased by 28.6 and 17.6% under W1N1D2. W1N2D2 had 8.4% higher N uptake efficiency and13.9% higher N partial factor productivity than W2N2D1. W1N2D2 improved urease activity and nitrate reductaseactivity by 5.4% at the R2 (blister) stage and 19.6% at the V6 (6th leaf) stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%, respectively. W1N1D2 and W1N2D2 reduced the nitrate nitrogenand ammoniacal nitrogen contents at the R6 stage in the 40–100 cm soil layer, comparedwith W2N2D1. In summary, increasing the plantingdensity by 30% can compensate for the loss of grain yield and aboveground N accumulationunder reduced water and N inputs. Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulationwhen water was reduced by 20% while the N application rate remained constant inarid irrigation areas.</p><p class="MsoNormal" style="margin-left:21.0pt;text-indent:-21.0pt;"> <br></p>
{{custom_ref.citationList}1}https://doi.org/{{custom_ref.bodyP_ids}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.bodyP_ids}3}{{custom_ref.id}9}本文引用 [{{custom_ref.id}0}]摘要{{custom_citation.annotation}8}[7]DONG G,
GUO J X,
CHEN J Q,
SUN G,
GAO S,
HU L J,
WANG Y L. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in Northeast China. Ecohydrology, 2011, 4(2): 211-224.
{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[8]魏淑丽, 王志刚, 于晓芳, 孙继颖, 贾琦, 屈佳伟, 苏布达, 高聚林, 张永清. 施氮量和密度互作对玉米产量和氮肥利用效率的影响. 植物营养与肥料学报, 2019, 25(3): 382-391.
WEI S L,
WANG Z G,
YU X F,
SUN J Y,
JIA Q,
QU J W,
SU B D,
GAO J L,
ZHANG Y Q. Interaction of nitrogen fertilizer rate and plant density on grain yield and nitrogen use efficiency of maize. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 382-391. (in Chinese)
{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{fundList_cn}8}[9]BOOMSMA C R,
SANTINI J B,
TOLLENAAR M,
VYN T J. Maize morphophysiological responses to intense crowding and low nitrogen availability: An analysis and review. Agronomy Journal, 2009, 101(6): 1426-1452.
{{fundList_cn}6}https://doi.org/{{fundList_cn}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}8}{{custom_fund}4}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[10]摘要
【目的】探究密度与氮肥用量对不同耐密型夏玉米品种籽粒产量及氮素利用效率的影响。【方法】以稀植大穗型品种鲁单981(LD981)和紧凑耐密型品种郑单958(ZD958)为供试材料,设置52 500和82 500 株/hm<sup>2</sup>两个种植密度,同时设置0、90、180、270和360 kg·hm<sup>-2 </sup>5个施氮水平,研究密度与氮肥用量对不同耐密型夏玉米品种单株及群体干物质积累特性、氮素转运效率、氮素利用效率、产量及其构成因素的影响。【结果】增加种植密度,相同施氮水平处理的千粒重和穗粒数显著降低,单位面积穗数、空秆率、倒伏率显著提高,不耐密品种空秆率、倒伏率增加更显著。其中,ZD958与LD981各施氮处理的平均千粒重、穗粒数分别降低6.24%、6.77%和7.52%、18.09%,LD981空秆率、倒伏率高达17.0%、27.6%,显著高于ZD958。高密度条件下,籽粒产量随施氮量增加而增加,施氮270和360 kg·hm<sup>-2</sup>处理的产量差异不显著;低密度条件下,随施氮量增加,籽粒产量先上升后下降,施氮量270 kg·hm<sup>-2</sup>处理产量达到最大值。增加种植密度,夏玉米单株干物质积累量呈降低趋势,群体干物质积累量呈增加的趋势。随施氮量增加,单株和群体干物质积累量均显著增加,花后干物质贡献率呈上升趋势。相同氮素水平下,高密度处理显著提高夏玉米总氮素积累量、氮素转运量及其对籽粒的贡献率。增加种植密度,ZD958和LD981各施氮处理的平均总氮素积累量、氮肥农学利用率、氮肥利用率分别增加15.94%、39.01%、26.22%和1.96%、5.79%、14.92%。相同种植密度水平下,总氮素积累量和花后氮素同化量随施氮量增加呈上升趋势,而氮肥农学效率、氮肥利用率和氮肥偏生产力呈下降趋势。增加种植密度,营养器官氮素转运量和氮素转运对籽粒的贡献率显著增加。高密度种植条件下,氮素转运效率及贡献率随施氮量增加而增加,而低密度种植条件下,随施氮量增加而降低。【结论】本试验条件下,增密施氮显著提高不同耐密型夏玉米干物质积累量,但密度对籽粒产量的影响,品种间差异显著。增密后,LD981 籽粒产量增加不显著,ZD958 籽粒产量显著提高。高密度条件下,增加施氮量,不同耐密型玉米籽粒产量均显著增加,而 LD981 空秆率、倒伏率显著提高,是限制 LD981 籽粒产量提高的主要原因。增密显著提高不同耐密型玉米氮素利用率,提高营养器官氮素转运量;增加种植密度,ZD958 花后氮素同化量增加,LD981 则降低。施氮降低了植株氮素利用效率,但可以提高高密度条件下植株氮素吸收量,提高花后氮素同化量。增密与施氮相结合,有利于耐密型玉米产量与氮肥利用率协同提高。综合考虑产量和氮效率两方面,ZD958适宜种植密度为82 500株/hm<sup>2</sup>,施氮量为270 kg·hm<sup>-2</sup>;LD981适宜种植密度为52 500株/hm<sup>2</sup>,施氮量为180 kg·hm<sup>-2</sup>。
LI G H,
LIU J,
DONG S T,
LIU P,
ZHANG J W,
ZHAO B,
SHI D Y. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids. Scientia Agricultura Sinica, 2017, 50(12): 2247-2258. doi: 10.3864/j.issn.0578-1752.2017.12.006. (in Chinese)
【Objective】The objective of this experiment is to study the effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids. 【<span>Method</span><span>】</span><span>Two summer maize cultivars, density-resistant hybrid (ZD958) and non-density resistant hybrid (LD981), were used as experiment materials </span>to study the effects of different planting densities ( 52 500, 82 500 plant/hm<sup>2</sup>) and nitrogen rates (0, 90, 180, 270, 360 kg N·hm<sup>-2</sup>) on dry matter accumulation, nitrogen translocation efficiency, nitrogen use efficiency, yield and its components of different density-tolerance summer maize.【Result】 The 1000-grain weight and kernels per ear were significantly decreased with the increase of planting density at the same nitrogen application level, but the ear number, barrenness and lodging rate were significantly increased. The barrenness and lodging rate of non-density resistant hybrid were increased more significantly. The average 1000-grain weight and kernels per ear of ZD958 and LD981 were decreased by 6.24% and 6.77%, 7.52% and 18.09%, respectively, and barrenness and lodging rate of LD981 were as high as 17% and 27.6%, significantly higher than ZD958. The grain yield increased with increase of N application rate under high density condition, but the difference between N application rate at 270 kg·hm<sup>-2</sup> and 360 kg·hm<sup>-2</sup> was not significant. Under low density condition, the grain yield increased first and then decreased with increase of N application rate, and reached the maximum at N application rate of 270 kg·hm<sup>-2</sup>. The dry matter accumulation per plant decreased with the increase of planting density, while the population dry matter accumulation increased. Both of them increased with increase of N application rate, and the dry matter contribution rate increased after anthesis. Under the same nitrogen level, the high density treatments significantly increased the total N accumulation, N translocation and its contribution rate to grain. With the increase of planting density, the average total N accumulation, N agronomic efficiency and nitrogen utilization efficiency of ZD958 and LD981 were increased by 15.94%, 39.01%, 26.22% and 1.96%, 5.79%, 14.92%, respectively. Under the same planting density, the increase of nitrogen rate could improve the total N accumulation and assimilating amount of nitrogen after anthesis, while the nitrogen agronomic efficiency, nitrogen utilization efficiency and nitrogen partial factor productivity were decreased. With increase of planting density, the N translocation rate and N translocation rate of nutrient organs increased significantly. Under high planting density condition, the N translocation efficiency and contribution rate increased with increase of N application rate, while it decreased under low planting density condition. 【Conclusion】Under this experimental field condition, increased density and nitrogen application rate could significantly improve the dry matter accumulation of ZD958 and LD981. The effect of density on grain yield was significant between the two summer maize cultivars. Under the conditions of high density, increasing the amount of N fertilizer, the yields of two cultivars were increased significantly, while barrenness and lodging rate of LD981 increased significantly, which was the main reason for limiting grain yield increasing. Increasing density could significantly improve the nitrogen utilization rate and N translocation of vegetative organs. N assimilating amount after anthesis increased with increasing density in ZD958, and decreased in LD981. Nitrogen use efficiency decreased with increasing nitrogen application, but which could increase plant N uptake and nitrogen assimilation after anthesis under high density. <span>combination of density and nitrogen could improve the yield and nitrogen utilization rate together. As far as the grain yield and nitrogen efficiency are concerned, the most optimal plant density and nitrogen rate of ZD958 were 82 500 plants/hm<sup>2 </sup>and 270 kg·hm<sup>-2</sup>, and the most optimal plant density and nitrogen rate of LD981 were 52 500 plants/hm<sup>2</sup> and 180 kg·hm<sup>-</sup></span><sup>2</sup>.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[11]摘要
【目的】阐明不同株型玉米在氮素和密度互作下获得高产的形态生理互利机理,进一步提升密植玉米综合生产力。【方法】2014—2015年,在大田条件下,采用裂-裂区试验设计,以不同株型玉米品种为主区,氮素(N<sub>1</sub>:0,N<sub>2</sub>:90 kg N·hm<sup>-2</sup>和N<sub>3</sub>:180 kg N·hm<sup>-2</sup>)为裂区、密度(D<sub>1</sub>:45 000 株/hm<sup>2</sup>,D<sub>2</sub>:60 000 株/hm<sup>2</sup>和D<sub>3</sub>:75 000 株/hm<sup>2</sup>)为裂裂区,测定了植株形态、叶片光合性能和产量等指标。【结果】施氮对节间长度、叶倾角、叶色值、粒重和产量的影响程度均高于密度调控,茎粗、光合速率和穗粒数对增密响应程度较高。与平展型玉米相比,紧凑型玉米茎粗随密度提高降幅较小,第1—3节间长度对增密响应迟钝,随施氮量增加显著缩短(P<sub>N2</sub><sub>→N3</sub>=0.004—0.028),第4—5节间长度对增密的负响应幅度(10.9%)均高于平展型玉米同节间长度对其的正响应幅度(3.3%)。施氮可降低紧凑型玉米棒三叶叶倾角2.9°±1.1°,增密后,其穗下叶叶倾角降幅较高。紧凑型玉米叶色值对施氮量的响应峰值(N<sub>3</sub>)高于平展型玉米(N<sub>2</sub>),增密对其光合速率的负效应相对较小,在N<sub>3</sub>和D<sub>3</sub>处理下,其叶色值和光合速率均高于平展型玉米。紧凑型玉米穗粒数与粒重受氮密调控影响比平展型玉米小,其收获指数较高,且在氮/密处理间差异均不显著(P<sub>N1→N3</sub> =0.16,P<sub>D1→D3</sub> =0.12),而平展型玉米在氮/密处理间差异均达显著或极显著水平(P<sub>N1→N3</sub> =0.03,P<sub>D1-D3</sub><0.01)。紧凑型玉米和平展型玉米分别在N<sub>3</sub>D<sub>3</sub>和N<sub>3</sub>D<sub>1</sub>处理下获得较高产量,增密和施氮对其籽粒产量的贡献比分别是1﹕2.3和1﹕4.0。【结论】与平展型玉米相比,紧凑型玉米茎基部横/纵向生长对氮密协同提高具有较强的适应能力,施氮可降低紧凑型玉米棒三叶叶倾角,提高穗位叶光合性能。紧凑型玉米在高密高氮处理下较好的形态生理协调性保证了生育后期相对较高的物质转化效率,最终获得较高群体产量。
XIAO W X,
LIU J,
SHI L,
ZHAO H Y,
WANG Y B. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different plant types. Scientia Agricultura Sinica, 2017, 50(19): 3690-3701. doi: 10.3864/j.issn.0578-1752.2017.19.006. (in Chinese)
【Objective】The purpose of this study is to elucidate morphological and physiological mutual beneficial mechanism for compact type maize hybrid under nitrogen and density interaction, for further raise overall productivity of density tolerant maize hybrid.【Method】Plant morphological trait, ear leaf photosynthetic ability and yield were determined under field experimental condition in 2014 and 2015. Split-split plot design, 2 plant type hybrids (compact plant type and flat plant type) as the main plot, 3 nitrogen treatments (N1: 0, N2: 90 kg N·hm<sup>-2</sup> and N3: 180 kg N·hm<sup>-2</sup>) as the split plot, 3 plant densities (D1: 45 000 plant/hm<sup>2</sup>, D2: 60 000 plant/hm<sup>2</sup> and D3: 75 000 plant/hm<sup>2</sup>) as the sub-split plot. 【Result】The effects of nitrogen on internode length, leaf angle, SPAD value, kernel weight per ear and yield were stronger than that of density on those parameters. Stem diameter, <em>P</em>n and kernel number per ear was sensitive to density increasing. Compared with flat type hybrid, decreased range of stem diameter was small, and response sensitivity from 1 to 3 internode length was slowness with plant density increased for compact type hybrid. However, the 1-3 internode length was shortened significantly with nitrogen input amount increased (<em>P</em><sub>N2→N3</sub>=0.004-0.028), negative response range of 4-5 internode length for compact type hybrid (10.9%) was higher than positive response range of 4-5 internode length for flat type hybrid (3.3%). Leaf angle of compact type hybrid was down to 2.9°±1.1° with nitrogen input. The leaf angle of leaf below ear leaf changed to a relatively lower with plant density increased. Response peak value of SPAD to nitrogen for compact type hybrid (N<sub>3</sub>) was higher than that for flat type hybrid (N<sub>2</sub>). The negative effect of <em>P</em>n caused by density increasing was relatively small for compact type hybrid. SPAD and <em>P</em>n of ear leaf for compact type hybrid were higher than that for flat type hybrid in N<sub>3</sub> and D<sub>3</sub> treatment. Altogether, the effect of nitrogen and density interaction on kernel number and kernel weight per ear for compact type hybrid was smaller than that for flat type hybrid. Harvest index of compact type hybrid was relatively high, which the difference between N×D interaction treatment (<em>P</em><sub> N1→N3</sub> =0.16,<em>P</em><sub>D1→D3</sub> =0.12) was no significant, however, that the difference between that (<em>P</em><sub> N1→N3</sub> =0.03,<em>P</em><sub> D1→D3</sub><0.01) of flat type hybrid was very significant. The highest yield record was obtained in N<sub>3</sub>D<sub>3</sub> and N<sub>3</sub>D<sub>1 </sub>treatments for compact and flat type hybrid, respectively. And their yield gain ratio for density and nitrogen was 1﹕2.3 and 1﹕4.0, respectively. 【Conclusion】 Compared with flat type hybrid, compact type hybrid had a more adaptable ability of regulating cross and longitudinal growth of basal part of stem. Nitrogen application could reduce leaf angle of leaf above ear leaf, ear leaf and leaf below ear leaf, which could enhance ear leaf light use efficiency. Proper morphophysiological coordinate ability keeps a higher dry matter transfer rate for the compact type hybrid under higher density and higher nitrogen fertilizer condition at kernel weight formation stage, thus achieving a higher population yield.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[12]薛吉全, 梁宗锁, 马国胜, 路海东, 任建宏. 玉米不同株型耐密性的群体生理指标研究. 应用生态学报, 2002, 13(1): 55-59.
摘要
以紧凑型和平展型玉米不同株型的玉米品种为主要研究对象,利用作物生长分析法,系统研究了不同株型玉米品种群体内光分布、物质生产诸因素(LAI、NAR和CGR)和群体库源特征等群体生理指标与品种耐密性的关系,结果表明,群体内光分布合理与否是衡量品种耐密性的重要指标,叶面积系数(LAI)、净同化率(NAR)和作物生长率(CGR)的动态发展规律是反映耐密性的本质特征,群体库源关系协调与否是鉴定品种耐密性的一个综合指标.
XUE J Q,
LIANG Z S,
MA G S,
LU H D,
REN J H. Population physiological indices on density-tolerance of maize in different plant type. Chinese Journal of Applied Ecology, 2002, 13(1): 55-59. (in Chinese)
Taken maize in two plant types of compact-type and flat-type as research object,the relationships between density-tolerance and light distribution in population,indices of productivity(LAI,NAR,and CGR),and population sink-source were studied synthetically by means of crop growth analysis method.The results showed that light distribution in population was the chief index to measure density-tolerance of different maize varieties.The kinetic rules of LAI,NAR,and CGRwere the basic feature reflecting density-tolerance.The correspondent relationship in population sink-source was a comprehensive index to appraise density-tolerance of different maize varieties.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[13]SHAO H,
SHI D F,
SHI W J,
BAN X B,
CHEN Y C,
REN W,
CHEN F J,
MI G H. Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant and Soil, 2019, 439(1): 201-217.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[14]曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012, 18(6): 1343-1353.
CAO S B,
ZHANG J W,
DONG S T,
LIU P,
ZHAO B,
YANG J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343-1353. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[15]胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 不同密度混播对玉米植株13C同化物分配和产量的影响. 应用生态学报, 2018, 29(10): 3229-3236.
摘要
为了探讨不同密度混播对玉米植株<sup>13</sup>C同化物分配和产量的影响,选用‘郑单958’(ZD)和‘登海605’(DH)为试验材料,在不同密度下(LD,67500株·hm<sup>-2</sup>;HD,97500株·hm<sup>-2</sup>)设置单播(SZD、SDH)与混播(M、1∶1、2∶2)处理,研究玉米品种不同密度混播对植株光合特性、<sup>13</sup>C同化物分配、干物质积累量和产量的影响.结果表明: 随密度增加,籽粒产量、<sup>13</sup>C同化物在籽粒中的分配、干物质积累量和叶面积指数均提高;而叶绿素含量和净光合速率则降低.在67500株·hm<sup>-2</sup>下,混播较单播处理无显著优势,但在97500株·hm<sup>-2</sup>下,两品种混播提高了叶面积指数、叶绿素含量和穂位叶净光合速率,干物质积累量增加.混播促进茎等营养器官的干物质向籽粒的转运,提高了<sup>1</sup><sup>3</sup>C同化物在籽粒中的分配比例.混播处理较单播产量增加,主要因为千粒重显著增加.在高密度种植条件下,混播有助于扩大光合面积,维持较高的净光合速率,提高群体干物质积累量,改善干物质的分配状况,增加同化物向籽粒的分配,最终提高夏玉米产量.可见,混播栽培可显著增加黄淮海区密植夏玉米产量.
HU D D,
ZHANG J W,
LIU P,
ZHAO B,
DONG S T. Effects of different densities of mixed-cropping on 13C-photosynthate distribution and grain yield of maize. Chinese Journal of Applied Ecology, 2018, 29(10): 3229-3236. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[16]韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49(7): 1919-1929.
摘要
针对干旱绿洲灌区水资源匮乏、玉米生产化肥投入量大等问题, 在水氮减量条件下, 探讨增大密度对玉米干物质积累、籽粒产量和产量构成的影响, 以期为建立水氮减量玉米稳产高效技术体系提供依据。2020—2021年, 在地方习惯灌水减量20% (3240 m<sup>3</sup> hm<sup>-2</sup>, W1)、习惯灌水(4050 m<sup>3</sup> hm<sup>-2</sup>, W2)和减量施氮25% (270 kg hm<sup>-2</sup>, N1)、习惯施氮(360 kg hm<sup>-2</sup>, N2)条件下, 研究密度从7.50万株 hm<sup>-2 </sup>(低, D1)提高30% (中, D2)、60% (高, D3)时, 玉米干物质积累及产量的响应特征。研究表明, 水、氮减量均显著降低玉米籽粒产量, 增密30%可补偿水氮同时减量导致的产量降低效应; 施氮量不变降低灌水量时, 增密可显著提高产量。2个试验年度内, W1较W2、N1较N2产量分别降低3.0%、12.9%, D2、D3较D1产量分别高12.9%、9.2%; W1N1D1较W2N2D1处理减产12.3%, W1N1D2与W2N2D1处理产量差异不显著。增密30%能够补偿水氮减量减产的主要原因是提高了灌浆初期到成熟期干物质的累积量和成穗数, W1N1D2与W2N2D1相比, 灌浆初期到成熟期干物质积累量提高5.8%, V<sub>max </sub>(最大干物质积累速率)、V<sub>mean </sub>(平均干物质积累速率)、T<sub>m </sub>(最大干物质积累速率出现时间)、HI (收获指数)差异均不显著, 穗数增加24.7%, 但穗粒数、千粒重分别降低19.3%和14.8%。W1N2D2较W2N2D1处理增产13.9%。当施氮量不变时, 减水增密稳产的主要原因是提高了干物质积累量、V<sub>mean</sub>、HI和穗数, W1N2D2与W2N2D1相比, 穗数、干物质积累、V<sub>mean</sub>和HI分别提高24.8%、10.2%、8.4%和4.7%, 千粒重差异不显著。因此, 本试验水氮同步减量条件下增密30%, 是绿洲灌区玉米水氮节约稳产高产的可行措施; 在施氮量保持不变但灌水量减少20%时, 密度提高30%是玉米节水增产的有效措施。
WEI J G,
GUO Y,
CHAI Q,
YIN W,
FAN Z L,
HU F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agronomica Sinica, 2023, 49(7): 1919-1929. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[17]王巧梅, 樊志龙, 赵彦华, 殷文, 柴强. 绿洲灌区不同密度玉米群体的耗水特性研究. 作物学报, 2017, 43(9): 1347-1356.
WANG Q M,
FAN Z L,
ZHAO Y H,
YIN W,
CHAI Q. Effect of planting density on water consumption characteristics of maize in oasis irrigation area. Acta Agronomica Sinica, 2017, 43(9): 1347-1356. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[18]刘战东, 肖俊夫, 于景春, 刘祖贵, 南纪琴. 春玉米品种和种植密度对植株性状和耗水特性的影响. 农业工程学报, 2012, 28(11): 125-131.
LIU Z D,
XIAO J F,
YU J C,
LIU Z G,
NAN J Q. Effects of varieties and planting density on plant traits and water consumption characteristics of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 125-131. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[19]张平良, 郭天文, 刘晓伟, 李书田, 曾骏, 谭雪莲, 董博. 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响. 植物营养与肥料学报, 2019, 25(4): 579-590.
ZHANG P L,
GUO T W,
LIU X W,
LI S T,
ZENG J,
TAN X L,
DONG B. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 579-590. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[20]焦智辉, 陈桂平, 范虹, 张金丹, 殷文, 李含婷, 王琦明, 胡发龙, 柴强. 绿洲灌区密植减量施氮玉米的水分利用特征. 中国农业科学, 2023, 56(16): 3088-3099. doi: 10.3864/j.issn.0578-1752.2023.16.004.
摘要
【目的】针对干旱灌区水资源有限、玉米生产氮肥投入过高、水分利用效率(WUE)低等问题,探讨密植补偿减量施氮对玉米水分利用效率负效应的可行性,为建立玉米节氮、水分高效利用技术提供理论依据。【方法】于2019—2022年在甘肃武威设置裂区试验,主区设减量施氮(N<sub>1</sub>,270 kg·hm<sup>-2</sup>)和传统施氮(N<sub>2</sub>,360 kg·hm<sup>-2</sup>)两个水平,裂区设传统密度(M<sub>1</sub>,78 000株/hm<sup>2</sup>)、中密度(M<sub>2</sub>,103 500株/hm<sup>2</sup>)和高密度(M<sub>3</sub>,129 000株/hm<sup>2</sup>)3个水平,N<sub>2</sub>M<sub>1</sub>为对照,重点研究施氮、种植密度及两者互作对玉米耗水特性、水分利用效率的影响。【结果】试验年度内,减量施氮较传统施氮处理耗水量降低4.7%,高、中密度较传统密度处理耗水量分别增大8.4%、4.2%,减量施氮与中密度组合(N<sub>1</sub>M<sub>2</sub>)与对照相比耗水量无显著差异。玉米籽粒产量随施氮量的减少而降低,中密度较高密度、传统密度显著提高了籽粒产量,减量施氮与中密度组合较对照提高了籽粒产量。减量施氮较传统施氮处理籽粒产量降低了4.6%,中密度较高密度、传统密度处理籽粒产量分别提高5.6%、8.2%,N<sub>1</sub>M<sub>2</sub>较N<sub>2</sub>M<sub>1</sub>籽粒产量提高4.3%。减量施氮降低了灌溉水分利用效率(IWUE),但能够保持与传统施氮相同的WUE;中密度有利于提高玉米IWUE和WUE,补偿减量施氮导致的水分利用效率下降。4年内,减量施氮使玉米IWUE降低4.5%,但WUE未显著下降;中密度较传统密度、高密度处理的IWUE分别提高8.6%、6.4%,WUE分别提高4.5%、10.1%;中密度对减量施氮IWUE和WUE的补偿效应分别为4.3%和5.2%。【结论】在干旱灌区,玉米全生育期施氮270 kg·hm<sup>-2</sup>、密度103 500株/hm<sup>2</sup>较现有水氮管理水平提高了产量和水分利用效率,是适用于该区域的玉米节氮、水分高效利用生产技术。
JIAO Z H,
CHEN G P,
FAN H,
ZHANG J D,
YIN W,
LI H T,
WANG Q M,
HU F L,
CHAI Q. Water use characteristics of increased plant density and reduced nitrogen application maize in oasis irrigated area. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099. doi: 10.3864/j.issn.0578-1752.2023.16.004. (in Chinese)
【Objective】In arid irrigation area, the problem of limited water resources, high nitrogen fertilizer input, and low water use efficiency (WUE) in maize production is serious, it’s necessary to investigate the viability of dense planting to compensate for the negative impact of reduced nitrogen application on the water use efficiency of maize, so as to provide academic foundation for the maize production with reduced nitrogen but high water use efficiency.【Method】From 2019 to 2022, a split-plot experiment was carried out in Wuwei, Gansu Province. Two levels of nitrogen application rate, including reduced nitrogen application (N1, 270 kg·hm-2) and traditional nitrogen application (N2, 360 kg·hm-2) were set in the main plot. Three planting densities, including traditional density (M1, 78 000 plants/hm2), medium density (M2, 103 500 plants/hm2), and high density (M3, 129 000 plants/hm2) were set in the split-plot, N2M1 was set as the control. The effects of nitrogen application, plant density and their interaction on water consumption characteristics and water use efficiency of maize were mainly studied.【Result】In the trial year, the water consumption of reduced nitrogen application was 4.7% lower than that of traditional nitrogen application. The water consumption of the combination of reduced nitrogen application and medium density (N1M2) was not significantly different from that of the control. The water consumption of high and medium density treatments increased by 8.4% and 4.2% respectively compared with that of traditional density treatment. The grain yield of maize decreased with the reduction of nitrogen application. Medium density could increase grain yield compared with high density and traditional density. The combination of reduced nitrogen application and medium density increased the grain yield compared with the control. In the test year, the grain yield of the reduced nitrogen application treatment was 4.6% lower than that of traditional nitrogen application treatment, the grain yield of the medium density treatment was increased by 5.6% and 8.2% respectively compared with high density treatment and traditional density, and the grain yield of N1M2 was 4.3% higher than that of N2M1. Reducing nitrogen application reduced IWUE, but maintained the same WUE as traditional nitrogen application; Medium density was beneficial to improve WUE and IWUE, and could compensate for the WUE decrease caused by reduced nitrogen application. In the four study years, the IWUE decreased by 4.5% due to reduced nitrogen application, and there was no significant difference in WUE between the two nitrogen application levels; Compared with the traditional and high density treatments, the IWUE of the medium density treatment increased by 8.6% and 6.4%, respectively, and the WUE increased by 4.5% and 10.1%, respectively; The compensation effects of medium density on the IWUE and WUE were 4.3% and 5.2%, respectively.【Conclusion】In arid irrigation area, applying nitrogen of 270 kg·hm-2 and density of 103 500 plants/hm2 during the whole growth period of maize can increase the yield and water use efficiency compared with the existing water and nitrogen management measures, which is a production technology for nitrogen saving and water efficient utilization of maize in this area.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[21]鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2005.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agricultural Press, 2005. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[22]LI Y X,
CHEN J,
TIAN L B,
SHEN Z Y,
AMBY D B,
LIU F L,
GAO Q,
WANG Y. Seedling-stage deficit irrigation with nitrogen application in three-year field study provides guidance for improving maize yield, water and nitrogen use efficiencies. Plants, 2022, 11(21): 3007.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[23]SUN T,
LI Z Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Research, 2019, 241: 107558.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[24]陈国平. 玉米的干物质生产与分配. 玉米科学, 1994, 2(1): 48-53.
CHEN G P. Accumulation and distribution of dry matter of maize. Journal of Maize Sciences, 1994, 2(1): 48-53. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[25]SHAO H,
XIA T T,
WU D L,
CHEN F J,
MI G H. Root growth and root system architecture of field-grown maize in response to high planting density. Plant and Soil, 2018, 430(1): 395-411.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[26]何长安, 刘兴焱, 杨耿斌, 纪春学, 王辉, 张恒. 黑龙江北部早熟区玉米增密试验. 黑龙江农业科学, 2016(11): 19-22.
HE C A,
LIU X Y,
YANG G B,
JI C X,
WANG H,
ZHANG H. Maize increasing density experiment in early maturity area of northern of Heilongjiang Province. Heilongjiang Agricultural Sciences, 2016(11): 19-22. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[27]ZHAO Y J,
XING S,
ZHANG Q S,
ZHANG F S,
MA W Q. Causes of maize density loss in farmers’ fields in Northeast China. Journal of Integrative Agriculture, 2019, 18(8): 1680-1689.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[28]SHEN D P,
WANG K R,
ZHOU L L,
FANG L,
WANG Z,
FU J L,
ZHANG T T,
LIANG Z Y,
XIE R Z,
MING B,
HOU P,
XUE J,
LI J M,
KANG X J,
ZHANG G Q,
LI S K. Increasing planting density and optimizing irrigation to improve maize yield and water-use efficiency in Northeast China. Agronomy, 2024, 14(2): 400.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[29]王缘怡, 李晓宇, 王寅, 张馨月, 冯国忠, 焉莉, 李翠兰, 高强. 吉林省农户玉米种植与施肥现状调查. 中国农业资源与区划, 2021, 42(9): 262-271.
WANG Y Y,
LI X Y,
WANG Y,
ZHANG X Y,
FENG G Z,
YAN L,
LI C L,
GAO Q. Smallholder investigation on current maize cultivation and fertilization in Jilin province. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(9): 262-271. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[30]胡聪慧, 石文君, 李梁, 沙野, 钱春荣, 齐华, 米国华. 东北地区玉米氮高效品种筛选及产量组成因素分析. 玉米科学, 2020, 28(5): 67-76.
HU C H,
SHI W J,
LI L,
SHA Y,
QIAN C R,
QI H,
MI G H. Screening for nitrogen-efficient maize cultivars used in Northeast China and analysis of yield components. Journal of Maize Sciences, 2020, 28(5): 67-76. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
摘要
【目的】 东北地区春旱频发严重影响玉米出苗与苗期生长,明确水分、氮素对玉米苗期生长和根系发育的影响及其耦合效应,可为东北春玉米水、氮调控措施的优化提供依据。【方法】 2016—2017连续2年设置水分、氮素两因素盆栽试验,土壤相对含水量设4个水平,分别为重度干旱(W0,30%)、适度干旱(W1,50%)、水分适宜(W2,70%)和水分过量(W3,90%);施氮量设3个水平,分别为不施氮(N0,0)、低氮(N1,0.12 g N·kg <sup>-1</sup>土)和高氮(N2,0.24 g N·kg <sup>-1</sup>土)。【结果】 水分、氮素均显著影响玉米苗期的植株生长、根系发育、氮素吸收与利用,且两因素对植株干重、根系形态、吸氮量和氮肥利用率交互作用显著。土壤水分亏缺或过量均抑制了植株生长、干物质累积、根系发育和氮素吸收。W0处理的负面影响最为严重,其地上部干重、根系干重和植株吸氮量与W2处理相比分别降低55.5%、60.1%和47.4%,氮肥利用率下降6.4个百分点,根长和根表面积分别减少58.2%和59.5%。施氮显著促进玉米苗期植株生长与氮素吸收,降低根冠比,且不同水分条件下氮肥效应及对根系发育的影响存在明显差异。水分适宜条件下施氮促进根系生长,显著增加根长、根表面积和根体积,植株干重和吸氮量增幅最高。干旱胁迫条件下施氮抑制了根系发育,显著降低根长和根表面积,氮肥效应偏低。水分过量条件下施氮改善根系生长,但施氮效应仍低于W2处理。各水分条件下,N1处理的根长和根表面积均高于N2处理,而体积接近或更小,说明低氮增加了细根的比例。水分、氮素不仅显著影响根系形态,也导致根系空间分布出现明显差异。干旱胁迫促进根系下扎,增加深层土壤的根长分布,W0和W1处理0—12 cm土层根长比例相比W2处理分别下降11.0和8.3个百分点,而24—36 cm土层分别提高9.5和6.9个百分点。与干旱胁迫相反,水分过量趋向于增加根系在表层土壤的聚集。施氮显著促进表层土壤的根系分布,N1和N2处理0—12 cm土层根长比例相比N0处理分别增加16.3和13.7个百分点,而24—36 cm土层分别下降11.5和12.5个百分点。所有水-氮处理中,W1N1处理根系的空间分布最为均衡。【结论】 水分、氮素对玉米苗期生长和根系发育有显著的耦合效应,适宜的水、氮措施可优化根系形态与空间分布,增加植株干重和氮素吸收利用。春玉米生产中建议降低氮肥基施用量以发挥水氮耦合效应,促进根系下扎和细根增殖,提高植株耐旱性和氮肥利用率。
ZHANG X Y,
WANG Y,
CHEN J,
CHEN A J,
WANG L Y,
GUO X Y,
NIU Y L,
ZHANG X Y,
CHEN L D,
GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
【Objective】 The frequent spring drought has severely negative impacts on seed emergence and seedling growth in the maize production of Northeast China. It is necessary to understand the coupling effects of soil water condition and nitrogen (N) rate on maize plant and root growth at the seedling stage, and further to provide reference for optimizing water and N management in maize production of Northeast China. 【Method】In this study, two pot experiments were conducted in 2016 and 2017, with a two factor factorial design of soil water and N rates. The soil water condition included 30%, 50%, 70% and 90% of field capacity, respectively, representing severe water-stress (W0), moderate water-stress (W1), well-watered (W2) and over-watered (W3), respectively. The N rates included 0, 0.12 and 0.24 g·kg -1 soil, representing N-omission (N0), low N (N1) and high N (N2), respectively. 【Result】 Soil water and N rate had significant individual effects on maize plant and root growth at the seedling stage, and showed interactive effects on dry matter (DM), root morphology, N uptake, and N fertilizer use efficiency (NUE). Both soil water deficit and excess had negative impacts on maize plant growth, DM accumulation, root development, and N uptake at the seedling stage, and was especially serious under W0 treatment. Compared with W2 treatment, on average in two years, shoot and root DM and plant N uptake under W0 treatment decreased by 55.5%, 60.1% and 45.8%, respectively, NUE decreased by 7.8 percentage points. And root length (RL) and root surface area (RSA) decreased by 58.2% and 59.5%, respectively. The N fertilization improved significantly maize plant growth and N uptake but reduced root/shoot ratio at the seedling stage. Moreover, the plant and root growth responses of N fertilizer differed obviously with the different soil water conditions. The N fertilization improved root growth in terms of higher RL, RSA and root volume (RV) under W2 treatment, and therefore showed the highest plant DM and N uptake. However, N fertilization limited root growth and decreased significantly RL and RSA under W0 and W1 treatments. The N fertilization also improved root growth under W3 treatment, but the N fertilizer response was still lower than that under W2 treatment. Across all the soil water conditions, maize plants showed higher RL and RSA under N1 treatments than that under N2 treatments, but the RV was equal or smaller, indicating that low N supply induced fine root development at the seedling stage. Soil water and N rate not only affected significantly maize root morphology, but also had great effects on root system spatial distribution. The water-stress induced deeper root growth and RL distribution in subsoil. Compared with W2 treatment, on average, the distribution ratio of RL in 0-12 cm soil layer decreased by 11.0 percentage points under W0 treatment and 8.3 percentage points under W1 treatment, but their distribution ratio in 24-36 cm soil layer increased by 9.5 and 6.9 percentage points, respectively. In contrast to soil water-stress condition, maize root system showed a concentrated trend in topsoil under over-watered condition. The N fertilization improved significantly root distribution in topsoil. Compared with N0 treatment, the RL distribution ratio increased by 16.3 and 13.7 percentage points higher in 0-12 cm soil layer under N1 and N2 treatments, respectively, and the distribution ratio decreased by 11.5 and 12.5 percentage points lower in 24-36 cm soil layer, respectively. Across all the soil water-N treatments, maize root system showed the more balanced spatial distribution under the W1N1 treatment.【Conclusion】Soil water condition and N rate had significant coupling effects on maize seedling growth and root development. The appropriate soil water and N management could optimize root morphology and spatial distribution, and improve plant DM accumulation and N uptake. Therefore, we suggested reducing basal N rate to stimulate deeper root growth with more fine root by inducing the water-N coupling effect, and further to enhance plant resistance to drought stress and to improve NUE in spring maize production of Northeast China.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]WANG Y,
ZHANG X Y,
CHEN J,
CHEN A J,
WANG L Y,
GUO X Y,
NIU Y L,
LIU S R,
MI G H,
GAO Q. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management, 2019, 212: 328-337.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[33]张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中, 王淑英, 程万莉. 覆膜时期与施氮量对旱地玉米土壤耗水特征及产量的影响. 水土保持学报, 2018, 32(6):72-78.
ZHANG J J,
FAN T L,
DANG Y,
ZHAO G,
WANG L,
LI S Z,
WANG S Y,
CHENG W L. Effect of film mulching period and nitrogen application rate on soil water consumption characteristics and maize yield in dryland. Journal of Soil and Water Conservation, 2018, 32(6): 72-78. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}基金
国家重点研发计划项目子课题(2023YFD2300403)
吉林省教育厅科学技术研究重点项目(JJKH20230405KJ)
吉林省自然科学基金面上项目(20230101261JC)
{{custom_fund}}相关知识
氮磷钾配施对制种玉米产量及经济效益的影响
轮作休耕对小麦和油菜水分利用效率和产量的影响
滴灌和施肥频率对强筋小麦产量及水分和氮素利用效率的影响
灌溉频率和施氮量对滴灌春小麦干物质积累及产量的影响
不同施氮量下秸秆还田对棉花产量形成与氮肥利用效率的影响及其机制
湖南省稻田花生施氮量与基肥氮量的研究
氮、磷、钾肥对苜蓿产量、根瘤菌及养分吸收利用率的影响
不同管理模式对生姜产量和养分效率的影响
氮磷钾肥配施对大豆干物质积累及产量的影响
氮肥施用时间和植物生长调节剂对小麦氮吸收和利用的影响(英文)
网址: 种植密度与施氮量互作对不同玉米品种产量和水分利用效率的影响 https://www.huajiangbk.com/newsview1169283.html
上一篇: 怎么种梨树,必须要种植花期差不多 |
下一篇: 果实和种子的形成过程.ppt |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039