植物病原卵菌对重要抑制剂的抗性分子机制研究进展
摘要: 植物病原卵菌可导致多种毁灭性的植物病害,由于缺乏有效的抗病品种,目前化学防治仍是防治卵菌病害最有效的方法之一,但随着一些内吸性杀菌剂的不合理及频繁使用,抗性问题已日益突出。文章对目前主要的卵菌抑制剂苯酰胺类 (PAs)、羧酸酰胺类 (CAAs)、苯醌外部抑制剂类 (QoIs)、氧化固醇结合蛋白抑制剂类 (OSBPIs) 以及微管蛋白抑制剂类 (tubulin inhibitors) 的作用机制、抗性遗传机制、抗性分子机制的最新研究进展进行了综述,旨在为当前中国植物病原卵菌的抗性研究和防控提供参考。现有文献报道表明:5类重要卵菌抑制剂的抗性主要是由于病原菌中药剂靶标蛋白的点突变引起,且苯酰胺类及微管蛋白抑制剂的抗性由多个基因控制;不同羧酸酰胺类药剂的抗性遗传机制存在差异;苯醌外部抑制剂的抗性具有母系遗传的特征;推测氧化固醇结合蛋白抑制剂的抗性由单个显性基因控制。
Abstract: Plant pathogenic oomycetes could cause many devastating diseases. Currently, chemical control is still one of the most effective methods for the control of oomycete diseases. However, many fungicides against oomycetes have generated serious resistance problems because of unreasonable and frequent applications in fields. The mode of action, resistant genetic mechanism and molecular resistance mechanism of several most commonly used fungicides were reviewed, such as phenylamides (PAs), carboxylic acid amides (CAAs), quinone outside inhibitors (QoIs), oxysterol binding protein inhibitors (OSBPIs) and tubulin inhibitors. The current knowledge summaried in this review will contribute to the scientific control of plant pathogenic oomycetes and provide a valuable reference for future research. Existing literature reports demosntaretd that point mutation in target protein could cause resistance to PAs, CAAs, QoIs, OSBPIs and tubulin inhibitors. PAs and tubulin inhibitors resistance were controlled by more than one gene, and QoIs resisitance was maternal inheritance. It was speculated that OSBPIs resistance was controlled by one dominant gene. However, there was distinct difference in genetic mechanism for different CAAs fungicides.
图 1 与CAAs药剂抗性相关的不同卵菌纤维素合酶A3亚基突变位点
注:图中Pi、Pc、Pm、Ps、Pvi、Pcu分别为致病疫霉、辣椒疫霉、瓜类疫霉、大豆疫霉、葡萄霜霉及黄瓜霜霉。
Figure 1. Point mutation in CesA3 from different oomycetes that confers CAAs resistance
Note: Pi, Pc, Pm, Ps, Pvi, Pcu are Phytophthora infestans, Ph. capsici, Ph. melonis, Ph. sojae, Plasmopara viticola, Pseudoperonospora cubensis, respectively.
图 2 QoI类药剂抗性相关的Cytb突变位点
注:图中Ztr、Pvi、Bla、Pcu、Pli、Pin、Py分别代表小麦壳针孢叶枯菌、葡萄霜霉、莴苣霜霉、黄瓜霜霉、荔枝霜疫霉、致病疫霉及腐霉。
Figure 2. Point mutation in Cytb from different pathogens that confer QoIs resistance
Note: Ztr, Pvi, Bla, Pcu, Pli, Pin, Py are Zymoseptoria tritici, Plasmopara viticola, Bremia lactucae, Pseudoperonospora cubensis, Peronophythora litchi, Phytophthora infestans, Pythium, respectively.
图 3 与氟噻唑吡乙酮抗性相关的ORPs位点
注:图中Pi、Pc、Ps、Pu、Pa分别代表致病疫霉、辣椒疫霉、大豆疫霉、终极腐霉及瓜果腐霉。
Figure 3. Major point in ORPs from different oomycetes that relates with oxathiapiprolin resistance
Note: Pi, Pc, Ps, Pu, Pa are Phytophthora infestans, Ph. capsici, Ph. sojae, Pythium ultimum and Py. aphanidermatum, respectively.
表 1 卵菌与真菌的生理生化特征比较[3]
Table 1 Physiological and biochemical characteristics of oomycetes and fungi[3]
特征Characteristic卵菌
Oomycetes 真菌 (接合菌门、子囊菌门和担子菌门)
Fungi (zygo-, asco-, basidiomycetes) 染色体倍性
Ploidity 二倍体 (2 n,少有多倍体)
Diploid (2 n, rarely also polyploid) 单倍体 (n)
Haploid (n) 细胞壁结晶区组分
Cell wall, fibrillar fraction 纤维素 (10%~30%)
Cellulose (10%~30% of cell wall) 几丁质,壳聚糖
Chitin, chitosan 细胞壁非结晶区组分
Cell wall, amorphous fraction 1-3/1-6-β-葡聚糖 (70%~90%)
1-3/1-6-β-glucans (70%~90 % of cel wall) 1-3/1-6-β-葡聚糖
1-3/1-6-β-glucans 细胞膜功能甾醇
Cell membrane, functional sterol 胆固醇 (甾醇营养缺陷型)
Cholesterol, sterol auxotrophy 麦角甾醇
Ergosterol 赖氨酸生物合成途径
Lysine biosynthesis 二氨基庚二酸途径
DAP-pathway 氨基己二酸途径
AAP-pathway 菌丝隔膜
Hyphae (septa) 没有或仅有很少隔膜
No (few) septa 有隔膜
Regular septation 无性孢子阶段
Asexual spore stages 游动孢子 (孢子囊);厚垣孢子;分生孢子
Zoospores (and sporangia), chlamydospores, conidia 分生孢子
Conidia 有性孢子阶段
Sexual spore stages 卵孢子
Oospores 接合孢子,子囊孢子,担孢子
Zygo-, asco-, basidiospores
表 2 卵菌与真菌对药剂的敏感性比较[3]
Table 2 Sensitivity of oomycetes and fungi to different fungicides[3]
杀菌剂Fungicide卵菌
Oomycetes真菌 (接合菌门、子囊菌门和担子菌门)
Fungi (zygo-, asco-, basidiomycetes) 匹马菌素
pimaricin 不敏感
Tolerant 多数敏感
Mostly sensitive 苯并咪唑类
MBCs 不敏感
Tolerant 多数敏感 (抗性)
Mostly sensitive (resistant) 甾醇脱甲基抑制剂
DMIs 不敏感
Tolerant 多数敏感 (抗性)
Mostly sensitive (resistant) 苯酰胺类
PAs 敏感 (抗药性)
Sensitive (resistant) 不敏感
Tolerant 羧酸酰胺类
CAAs 霜霉目敏感 (抗药性);其他卵菌不敏感
Sensitive (resistant) for Peronosporales, tolerant for other oomycetes 不敏感
Tolerant 氧化固醇结合蛋白抑制剂类
OSBPIs 敏感 (抗药性) (大部分 Pythium spp.
不敏感)
Sensitive (resistant) (most Pythium spp., tolerant) 不敏感
Tolerant 苯醌外抑制剂类
QoIs 敏感 (抗药性)
Sensitive (resistant) 多数敏感 (抗性)
Mostly sensitive (resistant) 苯醌内抑制剂类
QiIs 敏感 (抗药性)
Sensitive (resistant) 多数不敏感
Mostly tolerant 苯醌内外抑制剂类
QioIs 部分敏感 (抗药性)
Some sensitive (resistant) 不敏感
Tolerant
表 3 主要卵菌抑制剂种类[3-4]
Table 3 Major oomycetes inhibitors[3-4]
杀菌剂类别Fungicide group作用机制
Mode of action 主要有效成分
Major active ingredients 杀菌剂抗性委员会代码
FRAC code抗性风险
Resistant risk 苯酰胺类
PAs RNA聚合酶 I
RNA polymerase I 甲霜灵 (精甲霜灵)、苯霜灵 (精苯霜灵)、呋霜灵等
metalaxyl (mefenoxam), benalaxyl (kiralaxyl), furalaxyl etc. 4 (A1) 高等
High 苯醌外抑制剂类
QoIs 细胞色素 bc1 复合物
Qo 位点
Cytochrome bc1 Qo site 嘧菌酯、吡唑醚菌酯、唑菌酮等
azoxystrobin, pyraclostrobin; famoxadone etc. 11 (C3) 高等
High 羧酸酰胺类
CAAs 纤维素合酶
Cellulose synthase 烯酰吗啉、异丙菌胺、双炔酰菌胺等
dimethomorph, iprovalicarb, mandipropamid etc. 40 (H5) 低到中等
Low to medium 氧化固醇结合蛋白抑制剂类
OSBPIs 氧化固醇结合蛋白同源蛋白
OSBP homologue 氟噻唑吡乙酮
oxathiapiprolin 49 (F9) 中到高等
Medium to high 苯甲酰胺类、噻唑甲酰胺类
Benzamides, thiazole-carboxamide β-微管蛋白
β-tubulin 苯酰菌胺、噻唑菌胺
zoxamide, ethaboxam 22 (B3) 低到中等
Low to medium 苯甲酰胺类
Benzamides 血影蛋白类似蛋白
Spectrin-like protein 氟吡菌胺
fluopicolide 43 (B5) 中等
Medium 硝基苯胺类
Dinitroanilines 氧化磷酸化解偶联剂
Uncouplers of oxidative phosphorylation 氟啶胺
fluazinam 29 (C5) 低等
Low 苯醌内抑制剂类
QiIs 细胞色素 bc1 复合物 Qi 位点
Cytochrome bc1 Qi site 氰霜唑、吲唑磺菌胺
cyazofamid, amisulbrom 21 (C4) 中到高等
Medium to high 苯醌内外抑制剂类
QioIs 细胞色素 bc1 复合物 Qo 和
Qi 位点
Cytochrome bc1 Qi and Qo site 唑嘧菌胺
ametoctradin 45 (C8) 中到高等
Medium to high 磷酸盐类
Phosphonates 植物诱抗剂
Host plant defence induction 乙磷铝
fosetyl-al P 07 (P) 低等
Low 氰基乙酰胺肟类
Cyanoacetamide-oxime 未知
Unknown 霜脲氰
cymoxanil 27 (U) 低到中等
Low to medium 其他
Others 多作用位点
Multisites 代森锰锌、百菌清、铜制剂等
mancozeb, chlorothalonil, copper compounds etc. M1-M5 低等
Low [1]
CAVALIER‐SMITH T. A revised six‐kingdom system of life[J]. Biol Rev, 1998, 73(3): 203-266. doi: 10.1017/S0006323198005167
[2]THINES M, KAMOUN S. Oomycete‐plant coevolution: recent advances and future prospects[J]. Curr Opin Plant Biol, 2010, 13(4): 427-433. doi: 10.1016/j.pbi.2010.04.001
[3]ISHII H, HOLLOMON D W. Fungicide resistance in plant pathogens[M]. Japan: Springer, 2015: 145-174.
[4]FONTAINE S, REMUSON F, CADDOUX L, et al. Investigation of the sensitivity of Plasmopara viticola to amisulbrom and ametoctradin in French vineyards using bioassays and molecular tools[J]. Pest Manag Sci, 2019, 75: 2115-2123.
[5]DAVIDSE L C, HOFMAN A E, VELTHUIS G C M. Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis[J]. Exp Mycol, 1983, 7(4): 344-361. doi: 10.1016/0147-5975(83)90019-1
[6]WOLLGIEHN R, BRÄUTIGAM E, SCHUMANN B, et al. Wirkung von metalaxyl auf die synthese von RNA, DNA und protein in Phytophthora nicotianae[J]. Zeitschrift für Allgemeine Mikrobiologie, 1984, 24(4): 269-279. doi: 10.1002/jobm.3630240417
[7]KUHN C D, GEIGER S R, BAUMLI S, et al. Functional architecture of RNA polymerase I[J]. Cell, 2007, 131(7): 1260-1272. doi: 10.1016/j.cell.2007.10.051
[8]SCHNEIDER D A. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation[J]. Gene, 2012, 493(2): 176-184. doi: 10.1016/j.gene.2011.08.006
[9]DRYGIN D, RICE W G, GRUMMT I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer[J]. Annu Rev Pharmacol Toxicol, 2010, 50: 131-156. doi: 10.1146/annurev.pharmtox.010909.105844
[10]SHATTOCK R C. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans[J]. Plant Pathol, 1988, 37(1): 4-11. doi: 10.1111/j.1365-3059.1988.tb02188.x
[11]LUCAS J A, GREER G, OUDEMANS P V, et al. Fungicide sensitivity in somatic hybrids of Phytophthora capsici obtained by protoplast fusion[J]. Physiol Mol Plant Pathol, 1990, 36(2): 175-187. doi: 10.1016/0885-5765(90)90105-7
[12]BHAT R G, MCBLAIN B A, SCHMITTHENNER A F. The inheritance of resistance to metalaxyl and to fluorophenylalanine in matings of homothallic Phytophthora sojae[J]. Mycol Res, 1993, 97(7): 865-870. doi: 10.1016/S0953-7562(09)81164-7
[13]CRUTE I R, HARRISON J M. Studies on the inheritance of resistance to metalaxyl in Bremia lactucae and on the stability and fitness of field isolates[J]. Plant Pathol, 1988, 37(2): 231-250. doi: 10.1111/j.1365-3059.1988.tb02069.x
[14]FABRITIUS A, SHATTOCK R C, JUDELSON H S. Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers[J]. Phytopathology, 1997, 87(10): 1034-1040. doi: 10.1094/PHYTO.1997.87.10.1034
[15]SAMEN F M A E, OBEROI K, TAYLOR R J, et al. Inheritance of mefenoxam resistance in selfed populations of the homothallic oomycete Phytophthora erythroseptica (Pethybr.), cause of pink rot of potato[J]. Am J Pot Res, 2005, 82(2): 105-115. doi: 10.1007/BF02853647
[16]LEBEDA A, SPENCER-PHILLIPS P T N, COOKE B M. The downy mildews: genetics, molecular biology and control[M]. Dordrecht: Springer Netherlands, 2008.
[17]JUDELSON H S, ROBERTS S. Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans[J]. Phytopathology, 1999, 89(9): 754-760. doi: 10.1094/PHYTO.1999.89.9.754
[18]RANDALL E, YOUNG V, SIEROTZKI H, et al. Sequence diversity in the large subunit of RNA polymerase I contributes to mefenoxam insensitivity in Phytophthora infestans[J]. Mol Plant Pathol, 2014, 15(7): 664-676. doi: 10.1111/mpp.12124
[19]MATSON M E H, SMALL I M, FRY W E, et al. Metalaxyl resistance in Phytophthora infestans: assessing role of RPA190 gene and diversity within clonal lineages[J]. Phytopathology, 2015, 105(12): 1594-1600. doi: 10.1094/PHYTO-05-15-0129-R
[20]KUHN P J, PITT D, LEE S A, et al. Effects of dimethomorph on the morphology and ultrastructure of Phytophthora[J]. Mycol Res, 1991, 95(3): 333-340. doi: 10.1016/S0953-7562(09)81244-6
[21]DEHNE H W, GISI U, KUCK K H, et al. Modern fungicides and antifungal compounds III[M]. Germany: Agro Concept, 2002: 75-90.
[22]KRÄMER W, SCHIRMER U. Overview[M]//Modern crop protection compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2007:651-674.
[23]GRIFFITHS R G, DANCER J, O'NEILL E, et al. A mandelamide pesticide alters lipid metabolism in Phytophthora infestans[J]. New Phytol, 2003, 158(2): 345-353. doi: 10.1046/j.1469-8137.2003.00739.x
[24]SUN H Y, WANG H C, STAMMLER G, et al. Baseline sensitivity of populations of Phytophthora capsici from China to three carboxylic acid amide (CAA) fungicides and sequence analysis of cholinephosphotranferases from a CAA-sensitive isolate and CAA-resistant laboratory mutants[J]. J Phytopathol, 2010, 158(4): 244-252. doi: 10.1111/j.1439-0434.2009.01606.x
[25]ZHU S S, LIU X L, LIU P F, et al. Flumorph is a novel fungicide that disrupts microfilament organization in Phytophthora melonis[J]. Phytopathology, 2007, 97(5): 643-649. doi: 10.1094/PHYTO-97-5-0643
[26] 卢晓红, 朱书生, 刘西莉. FM4-64 在植物病原真菌和卵菌的细胞膜及囊泡染色中的应用[J]. 植物病理学报, 2009, 39(4): 435-438.LU X H, ZHU S S, LIU X L. Application of FM4-64 on the staining of phytopathogen fungus and oomycete[J]. Acta Phytopathologica Sinica, 2009, 39(4): 435-438.
[27]BLUM M, BOEHLER M, RANDALL E, et al. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans[J]. Mol Plant Pathol, 2010, 11(2): 227-243. doi: 10.1111/j.1364-3703.2009.00604.x
[28]GISI U, WALDNER M, KRAUS N, et al. Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola[J]. Plant Pathol, 2007, 56(2): 199-208. doi: 10.1111/j.1365-3059.2006.01512.x
[29]MENG Q X, CUI X L, BI Y, et al. Biological and genetic characterization of Phytophthora capsici mutants resistant to flumorph[J]. Plant Pathol, 2011, 60(5): 957-966. doi: 10.1111/j.1365-3059.2011.02454.x
[30] 王茜. 辣椒疫霉对异丙菌胺和双炔酰菌胺的抗性遗传机制研究[D]. 北京: 中国农业大学, 2011.WANG Q. Genetic mechanism of the resistance of Phytophthora capsici to iprovalicarb and mandipropamid[D]. Beijing: China Agricultural University, 2011.
[31]BLUM M, WALDNER M, GISI U. A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola[J]. Fungal Genet Biol, 2010, 47(6): 499-510. doi: 10.1016/j.fgb.2010.02.009
[32]BLUM M, GAMPER H A, WALDNER M, et al. The cellulose synthase 3(CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides[J]. Fungal Biol, 2012, 116(4): 529-542. doi: 10.1016/j.funbio.2012.02.003
[33]BLUM M, WALDNER M, OLAYA G, et al. Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis[J]. Pest Manag Sci, 2011, 67(10): 1211-1214. doi: 10.1002/ps.2238
[34]PANG Z L, SHAO J P, CHEN L, et al. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance[J]. PLoS One, 2013, 8(2): e56513. doi: 10.1371/journal.pone.0056513
[35]CHEN L, ZHU S S, LU X H, et al. Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides[J]. PLoS One, 2012, 7(7): e42069. doi: 10.1371/journal.pone.0042069
[36] 蔡萌. 大豆疫霉对两类卵菌抑制剂的抗性分子机制研究[D]. 北京: 中国农业大学, 2016.CAI M. Studies of resistance molecular mechanism of CAA and benzamide fungicides in Phytophthora sojae[D]. Beijing: China Agricultural University, 2016.
[37]RUBIN A E, WERDIGER A, BLUM M, et al. EMS and UV irradiation induce unstable resistance against CAA fungicides in Bremia lactucae[J]. Eur J Plant Pathol, 2011, 129(2): 339-351. doi: 10.1007/s10658-010-9698-6
[38]XIAO Y M, ESSER L, ZHOU F, et al. Studies on inhibition of respiratory cytochrome bc1 complex by the fungicide pyrimorph suggest a novel inhibitory mechanism[J]. PLoS One, 2014, 9(4): e93765. doi: 10.1371/journal.pone.0093765
[39]FERNÁNDEZ-ORTUÑO D, TORÉS J A, DE VICENTE A, et al. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi[J]. Int Microbiol, 2008, 11(1): 1-9.
[40]GISI U, CHIN K M, KNAPOVA G, et al. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides[J]. Crop Prot, 2000, 19(8-10): 863-872. doi: 10.1016/S0261-2194(00)00114-9
[41]MITANI S, ARAKI S, TAKII Y, et al. The biochemical mode of action of the novel selective fungicide cyazofamid: specific inhibition of mitochondrial complex III in Phythium spinosum[J]. Pestic Biochem Physiol, 2001, 71(2): 107-115. doi: 10.1006/pest.2001.2569
[42] 程志明. 杀菌剂氰霜唑的开发[J]. 世界农药, 2005, 27(3): 1-4.CHENG Z M. Development of fungicide cyazofamid[J]. World Pestic, 2005, 27(3): 1-4.
[43]FEHR M, WOLF A, STAMMLER G. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc 1 complex[J]. Pest Manag Sci, 2016, 72(3): 591-602. doi: 10.1002/ps.4031
[44]FRAC. FRAC Code List ©*2019: fungal control agents sorted by cross resistance pattern and mode of action[EB/OL]. (2019-06-14)[2019-09-09]. https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2019.pdf?sfvrsn=98ff4b9a_2.
[45]DREINERT A, WOLF A, MENTZEL T, et al. The cytochrome bc1 complex inhibitor Ametoctradin has an unusual binding mode[J]. Biochim Et Biophys Acta BBA - Bioenerg, 2018, 1859(8): 567-576. doi: 10.1016/j.bbabio.2018.04.008
[46]DEHNE H W, DEISING H B, GISI U, et al. Modern fungicides and antifungal compounds V[M]. Germany Friedrichroda, International Reinhardsbrunn Symposium, 2008: 101-104.
[47]JUDELSON H S. Expression and inheritance of sexual preference and selfing potential in Phytophthora infestans[J]. Fungal Genet Biol, 1997, 21(2): 188-197. doi: 10.1006/fgbi.1997.0973
[48]SIEROTZKI H, WULLSCHLEGER J, GISI U. Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f. sp. tritici field isolates[J]. Pestic Biochem Physiol, 2000, 68(2): 107-112. doi: 10.1006/pest.2000.2506
[49]FRAC. List of pathogens with field resistance towards QoI fungicides[EB/OL]. (2018-05-01)[2019-09-09]. https://www.frac.info/docs/default-source/publications/list-of-resistant-plant-pathogens/list-of-resistant-plant-pathogenic-organisms_may-2018.pdf?sfvrsn=a2454b9a_2.
[50]GRASSO V, PALERMO S, SIEROTZKI H, et al. Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens[J]. Pest Manag Sci, 2006, 62(6): 465-472. doi: 10.1002/ps.1236
[51]ISHII H, FRAAIJE B A, SUGIYAMA T, et al. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew[J]. Phytopathology, 2001, 91(12): 1166-1171. doi: 10.1094/PHYTO.2001.91.12.1166
[52]GISI U, SIEROTZKI H. Fungicide modes of action and resistance in downy mildews[J]. Eur J Plant Pathol, 2008, 122(1): 157-167. doi: 10.1007/s10658-008-9290-5
[53]DEHNE H W, GISI U, KULK K H, et al. Modern fungicides and antifungal compounds IV[M]. Germany Friedrichroda, International Reinhardsbrunn Symposium, 2005:73-80.
[54]GISI U, SIEROTZKI H, COOK A, et al. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides[J]. Pest Manag Sci, 2002, 58(9): 859-867. doi: 10.1002/ps.565
[55]ZHOU Y X, CHEN L, HU J, et al. Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronophythora litchii[J]. Sci Rep, 2015, 5: 17466. doi: 10.1038/srep17466
[56] 王海强. 六种 QoI 类杀菌剂的抑菌活性、吸收传导及抗药性机制研究[D]. 北京: 中国农业大学, 2009.WANG H Q. Study on the antifungal activity, uptake and transportation and resistance mechanisms of six QoI fungicides[D]. Beijing: China Agricultural University, 2009.
[57]PASTERIS R J, HANAGAN M A, SHAPIRO R. Fungicidal azocyclic amides: WO2008013622[P]. 2008-01-31.
[58]MIAO J Q, CAI M, DONG X, et al. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance[J]. Front Microbiol, 2016, 7: 615.
[59]MIAO J Q, DONG X, LIN D, et al. Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes[J]. Pest Manag Sci, 2016, 72(8): 1572-1577. doi: 10.1002/ps.4189
[60]ANDREASSIL II J L, GUTTERIDGE S, PEMPER S O, et al. Detection and screening method and materials useful in performance thereof: WO2013009971[P]. 2013-01-17.
[61]WEBER-BOYVAT M, ZHONG W B, YAN D G, et al. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism[J]. Biochem Pharmacol, 2013, 86(1): 89-95. doi: 10.1016/j.bcp.2013.02.016
[62]MIAO J Q, CHI Y D, LIN D, et al. Mutations in ORP1 conferring oxathiapiprolin resistance confirmed by genome editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae[J]. Phytopathology, 2018, 108(12): 1412-1419. doi: 10.1094/PHYTO-01-18-0010-R
[63]YOUNG D H, SLAWECKI R A. Mode of action of zoxamide (RH-7281), a new oomycete fungicide[J]. Pestic Biochem Physiol, 2001, 69(2): 100-111. doi: 10.1006/pest.2000.2529
[64]YOUNG D H, RUBIO F M, DANIS P O. A radioligand binding assay for antitubulin activity in tumor cells[J]. J Biomol Screen, 2006, 11(1): 82-89. doi: 10.1177/1087057105282300
[65]UCHIDA M, ROBERSON R W, CHUN S, et al. In vivo effects of the fungicide ethaboxam on microtubule integrity in Phytophthora infestans[J]. Pest Manag Sci, 2005, 61(8): 787-792. doi: 10.1002/ps.1045
[66]BI Y, CUI X L, LU X H, et al. Baseline sensitivity of natural population and resistance of mutants in Phytophthora capsici to zoxamide[J]. Phytopathology, 2011, 101(9): 1104-1111. doi: 10.1094/PHYTO-01-11-0010
[67]CAI M, MIAO J Q, SONG X, et al. C239S mutation in the β-tubulin of Phytophthora sojae confers resistance to zoxamide[J]. Front Microbiol, 2016, 7: 762.
[68]KOUSIK C S, KEINATH A P. First report of insensitivity to cyazofamid among isolates of Phytophthora capsici from the southeastern United States[J]. Plant Dis, 2008, 92(6): 979.
[69]LU X H, HAUSBECK M K, LIU X L, et al. Wild type sensitivity and mutation analysis for resistance risk to fluopicolide in Phytophthora capsici[J]. Plant Dis, 2011, 95(12): 1535-1541. doi: 10.1094/PDIS-05-11-0372
[70]WANG W Q, YAN L, MENG R J, et al. Sensitivity to fluopicolide of wild type isolates and biological characteristics of fluopicolide-resistant mutants in Pseudoperonospora cubensis[J]. Crop Prot, 2014, 55: 119-126. doi: 10.1016/j.cropro.2013.09.012
[71]PAVELKOVÁ J, LEBEDA A, SEDLÁKOVÁ B. Efficacy of fosetyl-Al, propamocarb, dimethomorph, cymoxanil, metalaxyl and metalaxyl-M in Czech Pseudoperonospora cubensis populations during the years 2005 through 2010[J]. Crop Prot, 2014, 60: 9-19. doi: 10.1016/j.cropro.2014.02.006
[72]COHEN Y. Cross-resistance to four systemic fungicides in metalaxyl-resistant strains of Phytophthora infestans and Pseudoperonospora cubensis[J]. Plant Dis, 1984, 68(1): 137. doi: 10.1094/PD-68-137
[73]MOORMAN G W, KIM S H. Species of Pythium from greenhouses in Pennsylvania exhibit resistance to propamocarb and mefenoxam[J]. Plant Dis, 2004, 88(6): 630-632. doi: 10.1094/PDIS.2004.88.6.630
[74]BROWN S, KOIKE S T, OCHOA O E, et al. Insensitivity to the fungicide fosetyl-aluminum in California isolates of the lettuce downy mildew pathogen, Bremia lactucae[J]. Plant Dis, 2004, 88(5): 502-508. doi: 10.1094/PDIS.2004.88.5.502
[75]GENET J, JAWORSKA G. Characterization of European Plasmopara viticola isolates with reduced sensitivity to cymoxanil[J]. Eur J Plant Pathol, 2013, 135(2): 383-393. doi: 10.1007/s10658-012-0094-2
[76]DUAN Y B, ZHANG X K, GE C Y, et al. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum[J]. Sci Rep, 2015, 4: 7094. doi: 10.1038/srep07094
相关知识
植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制
植物抗病的分子基础与研究进展
分子植物卓越中心揭示病原真菌抑制昆虫免疫的基因对基因机制
研究揭示环境湿度调控稻瘟病菌致病力和水稻基础抗性的分子机制
植物病原菌抗药性及其抗性治理策略
植物抗病毒分子机制
水稻抗病机制及其研究进展
植物细菌性病害和病原细菌分类研究进展
植物病原真菌学实验课程教学方法的改革与探索
植物抗逆分子机制研究进展
网址: 植物病原卵菌对重要抑制剂的抗性分子机制研究进展 https://www.huajiangbk.com/newsview1151644.html
上一篇: 杀菌剂吡唑醚菌酯登记证PD201 |
下一篇: SDHIs和QoIs杀菌剂抗性研 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039