不同pH条件下剩余污泥厌氧发酵过程中溶出物的释放
摘要:对剩余污泥进行厌氧发酵处理可实现污泥中有机质和磷的释放并最终回收利用,而pH是影响厌氧发酵过程的重要因子。为研究pH对厌氧发酵中磷与有机物释放的影响,采用批次实验研究了pH分别为3、5、7、9、10、11时剩余污泥厌氧发酵过程中磷和有机物的释放与转化规律。结果表明,在不同pH下,剩余污泥厌氧发酵过程中发生着有机物与不同形态磷的迁移与转化,酸性和碱性环境下的厌氧发酵液成分的三维荧光结构不同。剩余污泥厌氧发酵过程中,泥相钙结合态磷(AP)在酸性条件下转化为液相磷,有机磷(OP)和大部分铁/铝结合态磷(NAIP)在碱性条件下转化为液相磷;其中, pH为11时,污泥发酵液中磷含量最高。污泥发酵类型为丁酸型发酵,发酵产物以异丁酸为主,其次是正戊酸和乙酸。pH为10时,发酵液中的蛋白质与多糖的总量、挥发性有机酸(VFAs)浓度最高,两者呈现正相关关系;类蛋白和类腐殖酸降解,利于VFAs的积累。
Abstract:Excess sludge is an important by-product of activated sludge process, which is rich in carbon, nitrogen, phosphorus and other resources. During its anaerobic fermentation treatment, the organic matters and phosphorus can be dissolved and released into the fermentation liquid for recycling, and pH is an important factor for this process. Static batch test was conducted to investigate the effect of pH (3, 5, 7, 9, 10 and 11) on the release and transformation of phosphorus and organic matters. The results showed that migration and transformation of organics and phosphorus speciation occurred at different pHs, the 3-D fluorescence structures of anaerobic fermentation compositions at acidic pHs were different from those at alkaline pHs. During the anaerobic fermentation process, apatite phosphorus (AP) in mud phase could be converted to liquid phosphorus under acidic conditions, while under alkaline conditions, organic phosphorus (OP) and most of none-apatite inorganic phosphorus (NAIP) could be converted to liquid phosphorus. At pH 11, the highest phosphorus concentration occurred in fermentation liquid, the sludge fermentation was a butyric acid-type one, and the main products were iso-butyric acid followed by n-valeric acid and acetic acid. At pH 10, fermentation liquid contained the highest total amount of protein and polysaccharides, and the highest concentration of volatile organic acids (VFAs), and a positive correlation was observed between them. The degradation of protein-like and humic acid-like matters was benefit for VFAs accumulation.
[1]房平, 唐安平, 付兴民, 等. 污泥性质对微波预处理-厌氧消化的影响及古菌群落结构分析[J]. 环境科学, 2018, 39(11): 5108-5115. [2]CHEN Y G, JIANG S, YUAN H Y, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. [3]YUAN Y, PENG Y Z, LIU Y, et al. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions[J]. Bioresource Technology, 2014, 174: 1-5. [4]JIE W G, PENG Y Z, RENG N Q, et al. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs[J]. Bioresource Technology, 2014, 152: 124-129. [5]LIU H, HAN P, LIU H B, et al. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater[J]. Bioresource Technology, 2018, 260: 105-114. [6]TONG J, CHEN Y G. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation[J]. Environmental Science Technology, 2007, 41(20): 7126-7130. [7]LI R H, LI X Y. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation[J]. Bioresource Technology, 2017, 245: 615-624. [8]QIAN T T, ZHANG X S, HU J Y, et al. Effects of environmental conditions on the release of phosphorus from biochar[J]. Chemosphere, 2013, 93(9): 2069-2075. [9]LIU X Y, CHE G, ERWIN J G, et al. Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications[J]. Water Research, 2013, 47(16): 6149-6156. [10]VANDEVOORT A R, LIVI K J, ARAI Y. Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols[J]. Geoderma, 2013, 206: 101-111. [11]XU Y F, HU H, LIU J Y, et al. pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation[J]. Chemical Engineering Journal, 2015, 267: 260-265. [12]WU L, ZHANG C, HU H, et al. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment[J]. Bioresource Technology, 2017, 240: 192-196. [13]ZHOU L J, ZHUANG W Q, COSTA Y G DE. In situ and short-time anaerobic digestion coupled with alkalization and mechanical stirring to enhance sludge disintegration for phosphate recovery[J]. Chemical Engineering Journal, 2018, 351: 878-885. [14]XIE C S, ZHAO J, TANG J, et al. The phosphorus fractions and alkaline phosphatase activities in sludge[J]. Bioresource Technology, 2011, 102(3): 2455-2461. [15]HE Z W, TANG C C, WANG L, et al. Transformation and release of phosphorus from waste activated sludge upon combined acid/alkaline treatment[J]. RSC Advances, 2017, 7: 35340-35345. [16]李平, 朱凤霞, 王丽苹, 等. 基于碳源回用目标的剩余污泥水解酸化产物调控研究[J]. 生态环境学报, 2017, 26(4): 676-680. [17]郭志勇,李晓晨,王超,等. pH对玄武湖沉积物中磷的释放及形态分布的影响[J]. 农业环境科学学报, 2007, 26(3): 873-877. [18]BI D S, GUO X P, CHEN D H. Anaerobic digestion of waste active sludge (was): The release and recovery of nitrogen and phosphorus[J]. Fresenius Environmental Bulletin, 2012, 21(5): 1283-1289. [19]LATIF M A, MEHTA C M, BATSTONE D J. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release[J]. Water Research, 2015, 81: 288-293. [20]LEE-HYUM K, EUISO C, MICHAEL K. Sediment characteristics, phosphorus types and phosphorus release rates between River and Lake sediments[J]. Chemosphere, 2003, 50: 53-61. [21]BI W, LI Y Y, HU Y. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate[J]. Bioresource Technology, 2014, 166: 1-8. [22]周思琦, 戴晓虎, 戴翎翎, 等. 高温热水解对高含固污泥中磷的形态转化影响[J]. 中国环境科学, 2018, 38(4): 1391-1396. [23]JIN X C, WANG S R, PANG Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution, 2006, 139(2): 288-295. [24]HE Z W, LIU W Z, WANG L, et al. Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment[J]. Bioresource Technology, 2016, 222: 217-225. [25]HONG P N, HONDA R, NOGUCHI M, et al. Optimum selection of extraction methods of extracellular polymeric substances in activated sludge for effective extraction of the target components[J]. Biochemical Engineering Journal, 2017, 127: 136-146. [26]胡德秀, 张艳, 朱玲, 等. 污泥厌氧过程中磷释放与SMP特性研究[J]. 中国环境科学, 2018, 38(8): 2974-2980. [27]彭永臻, 邢立群, 金宝丹, 等. 强碱预处理和碱性强度对剩余污泥发酵的影响[J]. 北京工业大学学报, 2016, 42(2): 277-284. [28]YUAN H Y, CHEN W G, ZHANG H X, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40(6): 2025-2029. [29]ZHENG X, SU Y L, LI X, et al. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production[J]. Environmental Science & Technology, 2013, 47(9): 4262-4268. [30]YU G H, HEP J, SHAO L M, et al. Toward understanding the mechanism of improving the production of volatile fatty acids from activated sludge at pH 10.0[J]. Water Research, 2008, 42(18): 4637-4644. [31]LI X K, LIU G G, LIU S L, et al. The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation[J]. Journal of Environmental Management, 2018, 223: 85-91. [32]LIU X L, LIU H, CHEN Y Y, et al. Effects of organic matter and initial carbon-nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(7): 1049-1055. [33]FENG L Y, CHEN Y G, ZHENE X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH[J]. Environmental Science & Technology, 2009, 43(12): 4373-4380. [34]CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [35]詹瑜, 施万胜, 赵明星, 等. 高含固污泥厌氧消化中蛋白质转化规律[J]. 环境科学, 2018, 39(6): 2778-2785.相关知识
有机固体废弃物干法厌氧发酵技术
植物废弃物制备适于花卉苗木的污泥基质的方法
海水养殖污泥和糖厂滤泥生产微生物肥料的方法
花卉植物修复剩余污泥中重金属的实验研究
农药智能化控制释放研究进展(上)
农药智能化控制释放研究进展
农药智能化控制释放研究进展(农药系统)
污水污泥热解过程的能量平衡与反应热分析
玫瑰秸秆厌氧发酵产沼气特性试验研究
堆肥技术:有氧发酵与厌氧发酵的原理、优缺点及应用
网址: 不同pH条件下剩余污泥厌氧发酵过程中溶出物的释放 https://www.huajiangbk.com/newsview1126862.html
上一篇: 有机堆肥的发酵过程解析 |
下一篇: 松树皮路边抓一把,“掌握几个细节 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039